
A-A65 231 IMPACT OF NRDARE/SOFTWRE FAULTS ON SYSTEM 1/3
RELIABILITY VOLUME i STUDY R..(U) MARTIN MARIETTA

I AEROSPACE ORLANDO FL E C SOISTHAN ET AL. DEC 85
UNCLASSIFIED OR-18173 RADC-TR-85-228-VOL-1 F/6 9/2 NI

_tllllff~lflfff

- au

till ____ 12.8~ 2.5S1.25 mmIU 111110.
.2.0

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARDS-1963-A

I

.9.

Im

* '11
4,.

'% 7 - 17. -. --. 7-a W 7v-,

IA

RADC-TR-85-228, Vol I (of two)
Final Technical Report4
December 1985

SIMPA CT OF HA RDWA RE/OF TWA RE FA UL TS
<~ ON SYSTEM RELIABILITY Study Results

o ~Martin Marietta Orlando AerospaceDI C
AZLECTE

Edward C. Soistman and Katherine B. Ragsdale 18W~

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
CAir Force Systems Command 7

* Griffiss, Air Force Base, NY 13441-5700

3I
863 90

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-85-228, Vol I (of two) has been reviewed and is approved for
. publication.

APPROVED- /', : 2**(

EUGENE FIORENTINO
Project Engineer

APPROVED:

W. S. TUTHILL, COLONEL, USAF
0 Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN A. RITZ
Acting Chief, Plans Office

0

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (RBET) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

* ." Do not return copies of this report unless contractual obligations or notices
* on a specific document requires that it be returned.

0i 2

@j

UNCLASSIFID J./ ~ i'
SECURITY CLASSIFICATION OF THIS PAGE gal i.. 4

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

N/A Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited.N/A"

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

OR 18,173 RADC-TR-85-228, Vol I (of two)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(f applicable)

Martin Marietta Rome Air Development Center (RBET) *,

Orlando Aerospace
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

P.O. Box 5837 Griffiss AFB NY 13441-5700
Orlando FL 32855

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center RBET F30602-83-C-0050

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO NO. NO ACCESSION NO.

62702F 2338 02 96

11 TITLE (Include Security Classification) "J

IMPACT OF HARDWARE/SOFTWARE FAULTS ON SYSTEM RELIABILITY Study Results .' ..,:

12 PERSONAL AUTHOR(S)

Edward C. Soistman and Katherine B. Ragsdale

1ia TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Final FROM Mar 83 TO Jan 85 December 1985 206

16 SUPPLEMENTARY NOTATION

N/A

1? COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

L F EL D RUP SUB-GROUP Reliability
14 0OU Software Quality

09 n2 Hardware/Software Reliability Prediction
19 ABSTRACT (Continue on reverse if necessary and identify by block number) '.. '

- The objective of this study was to develop techniques, for predicting total system relia-

bility, which include the combined effects of software and hardware. Since hardware

reliability techniques are much further developed, the study emphasized methods of

characterizing software reliability. The software reliability prediction methodology

contained in the report is compatible with hardware reliability techniques and definitions

and is applicable during early development so that the predictions can influence the design

and development process.

The software reliability prediction techniques use both software product and development

process characteristics to develop estimates of the reliability of the various software

components which comprise the system. The software component reliabilities are combined

via a Markov model to obtain estimates of software system reliability. Estimates of the

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[@UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c OFFICE SYMBOL
Eugene Fiorentino (315) 330-3476 RADC (RBET)

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF HIS PAGE

All other editions are obsolete. UNCLASSIFIED OF PAGE

%% w

4fr..."."."." -...... ".'............................. .%

UNCLASSIFIED

-- execution frequencies of the various software components, as a function of the mission
profile, are required by the methodology.

Procedures for application of the techniques are provided and are intended for use by
a reliability engineer having a basic knowledge of software engineering practices.c
The techniques offer a redimentary framework for predicting total system' R(-SW)>.
reliability. Validation and refinement of the techniques using software development 4

and field reliability performance data remains to be accomplished. 4

Item 17. COSATI CODES (Continued)

Field Group N
18 03

kL

UNCLAS S IFIED

%
" -""-

%V

!AnXh Tu* Pak, .

EXECUTIVE SUMMARY

This study was performed to investigate the impact of hardware and
software faults on system reliability and to develop a prediction method-

ology that is applicable early in the development life cycle when it is
still possible to influence the development process and the reliability of
the resultant system. Since hardware reliability prediction is relatively

well understood and practiced, the study focused on software.

Existing software reliability prediction models rely heavily on fault
removal rates experienced when computer software is exercised, either dur-
ing test or operational usage. Although these models provide meaningful
results, they are not directly applicable during early development, but
rather after the development process is nearly complete. The methodology
presented here is based on parameters that are known early in the develop-
ment process. As the product evolves, the methodology may be applied iter- "
atively using progressively more accurate input parameters.

This approach is distinct from others in that it focuses on the
process used to develop software, as well as the unique characteristics of
the product itself:

1 Software is the realization of an algorithm that satisfies a given
set of performance and functional requirements. Even before the
software exists, its requirements are known. The methodology uses
this information in the form of inherent characteristics of the

software.

2 Software is the result of a logical process in the collective minds
of its developers. Unlike hardware, software has no physical parts
to fail. Software faults, therefore, are the result of errors made
during the development process. The methodology incorporates error
avoidance and detection information in the form of characteristics -.
of the development process.

3 Software cannot fail unless it is used. Likewise, software com-
ponents cannot fail except when they are being executed. Logical
paths are nonexistent with respect to reliability when they are not
being executed. Conversely, heavily traveled portions of the soft-
ware tend to dominate its performance. The methodology uses a

Markov technique to determine expected software performance based
on mission-derived path probabilities.

A related Rome Air Development Center (RADC) study [103] is currently
being performed by Software Applications International Corporation (SAIC).
Whereas the objectives of the Martin Marietta study placed emphasis on
reliability prediction at the beginning of the development life cycle, the 1 ,

SAIC study is oriented toward the end of the development phase and the
beginning of the system integration phase. While this study concentrates
on the PROCESS that will be used to develop the product, the SAIC study

conentate onthe PRODUCT that results from the process. lhuhcoe,
liaison between studies was maintained to ensure that the studies didn't

diverge or overlap, the methodologies and conclusions drawn were inde-
pendently derived. Interestingly, the methodologies are complementary.

iii " '

%I

• ,-'.L

UOI

The development life cycle of any system involves the translation of
ideas or requirements into a physical product by means of some engineering
and/or manufacturing process. In the beginning, the product does not
exist, but its functional requirements and planned development process are
known. Reliability prediction, therefore, must be accomplished using tnese
known parameters. At the end, the product, good or bad, exists. At this
time, the emphasis can, and should, focus on the measurable attributes of
the product itself. Both Martin Marietta and SAIC address error density
within a software product as a prime determinant of its reliability. The
Martin Marietta study focuses on predicting error density based on inherent

characteristics of the product and the error avoidance and detection
techniques that influence it. The SAIC study has defined characteristic
measures of the developed software that can be used to measure its error

density.

Other models exist for predicting software reliability based on fault
removal rates experienced during integration testing and operational usage.
The method presented herein does not conflict or compete with them either.

Again, the differences of approach are due to the development phase during
which the prediction technique is to be applied. There are no fault
removal rates to record until the system is built and operated.

The overall methodology requires the prediction of:

1 Individual component (software module) success probabilities

2 Expected path probabilities for specific operational missions.

A method is described to predict component success probabilities based on

the inherent characteristics of the component and the process that will be
used to develop it. Likewise, a means of using the mission scenario to
determine path probabilities is presented. Finally, the overall software

system reliability is predicted by combining the component success and path
probabilities mathematically.

I At the beginning of the development life cycle, prediction is made
based on the development process as described herein. '.

2 As components are developed, attributes of the product become
measurable, and the techniques being defined by SAIC can be readily
used to predict component probabilities of success. In addition,
some ut the existing reliability models can also be applied to
measure the reliability of the components. The same methodology is

used, except that one of the primary parameters becomes measurable
and provides more accurate Inputs to the prediction.

3 As the system is integrated and tested in a real or simulated
operational environment, the path probabilities hbcome measurable.

Again, the methodology is still applicable but has more precise
paramet ers.

iv

%

%w,,, ' ; , 9 :,' - . ',. -'- '. "'r . .,'- :.,-:.'- . . - -- :-:,..[. ,.. - .. - .. ,- .. .".v .. ---. ..

While the study has addressed many aspects of the prediction problem,

It also revealed several areas where more detailed research and data

collection is needed:

I Demonstration of the methodology was accomplished using error
avoidance and detection probabilities statistically derived from
the two surveys conducted during the study. No adequate and
complete historical data base could be found to quantitatively
describe the effectiveness of the error detection techniques so
highly regarded (qualitatively) in the industry. Although nearly
everyone agrees that a code walkthrough is a good error detection
technique, available data is insufficient to determine how good.
There is a tremendous void of good historical process data.

2 Extremely high execution rates of computer programs allow programs

to complete thousands of executions in a short period of time. If
every execution is cotsidered to be an independent trial, the soft-
ware reliability for that short period (thousands of executions)

would be extremely low unless the single execution reliability was
infinitesimally close to unity. Fortunately, a logic path that
works correctly one time will always work correctly if it is
executed with identical input and state variables. Of course, even
a simple computer program is exposed to a nearly infinite number of
input and state variable combinations. More detailed analysis of
input domain partitioning is needed before we can fully understand
and evaluate the effects of continuous cycling of software.

3 There is a school of thought that says that software reliability is

dominated by rarely used paths. The rationale is that, in an
operational environment, input combinations are encountered which

cause path traversals that contain errors which have never before
been exercised during test. Although the methodology does not
currently utilize path probabilities within individual software

components, it can be easily modified as our knowledge of rarely

used paths increases.

Ac~eSiOt For

wrts CfA&I
'VAS

P. V. .- i

..... ---- ----

Vail a d O

:3Fv
V%

• % % % %

TABLE OF CONTENTS

1.0 INTRODUCTION I

1.1 Overview and Objectives I
1.2 Approach. 2
1.3 Resuls 4

2.0 LITERATURE SEARCH............................7

2.1 Overview and Objectives 7
2.2 Approach..............................7
2.3 Results 7

2.3.1 Reliability Modeling Approaches. 7
2.3.2 Hardware Reliability Factors 9
2.3.3 Software Reliability Factors. 12

2.4 Conclusions. 16

3.0 CHARACTERIZATION TECHNIQUES FOR RELIABILITY PREDICTION 17

3.1 Overview and Objectives. 17
*3.2 Approach 17

3.3 Results. 17

3.3.1 System Reliability. 17
3.3.2 Hardware Subsystem Reliability. 22
3.3.3 Software Subsystem Reliability 23

3.4 Conclusions. 23

4.0 TWO-PASS SURVEY 25

*4.1 Overview and Objectives. 25
4.2 Approach 25

4.3 Results 25

4.. Pilot Survey. 25

4.3.2 FuL-Scale Survey 7

4.4 Conclusions. 29

5.0 RELIABILITY PREDICTION METHODOLOGY. 31

5.1 Overview and Objectives.
5.2 Approach 31
5.3 Results. 31

5.3.1 System Reliability. 32
5.3.2 Mission Reliability 34

vi

5.3.3 Hardware Reliability. 7
5.3.4 Software Reliability. 38

5.4 Conclusions. 52

6.0 DATA COLLECTION 55

6.1 Overview and Objective 55

6.2 Approach 55
6.3 Results. 55

6.3.1 Failure Rate. 55
6.3.2 Latent Defects. 56
6.3.3 Fault Assessment. 56
6.3.4 Enhancements. 56
6.3.5 Developer versus User 56
6.3.6 Military versus Commercial. 57

6.4 Conclusions and Recommendations. 57

6.4.1 Record All Software Problems 57
,"f'R6.4.2 Identify the Source. 58
*6.4.3 Distinguish Hardware from Software 58

6.4.4 Consistent Data Collection 58

7.0 CONCLUSIONS AND RECOMMENDATIONS 59

APPENDIX A - GLOSSARY A-1
APPENDIX B - LITERATURE REFERENCE LIST B-1
APPENDIX C - PILOT SURVEY FORM AND INSTRUCTIONS. C-I

A;APPENDIX D - PILOT SURVEY RESULTS. D-1
APPENDIX E - FULL-SCALE SURVEY FORM AND INSTRUCTIONS- 1
APPENDIX F - FULL-SCALE SURVEY RESULTS F-I

vii

e. W .- 'j

LIST OF FIGURES

Figure 1. System Reliability Methodology 3
Figure 2. Classic Approach - New Ingredient 32
Figure 3a. Single Mission System 33
Figure 3b. MuIl-phased System 33
Figure 4. Typical Mission Reliability Prediction Approach. 37
Figure 5. Hardware Reliability 38

.. Figure 6. Software Reliability Prediction Methodology. 39
Figure 7. Software Decomposition Process and Terminology 41
Figure 8. Relationship of R(I), R(C), A and D. 47

4-4

viii

%

LIST OF TABLES

Table I. Software Reliability Models 8
Table 2. Factors for Part Failure Rate Models Discrete Semiconductors

and Capacitors 0........................10
Table 3. Software Characteristics 18
Table D-1. Twenty Highest Ranked Software Attributes/Factors D-3
Table D-2. Statistical Results of Pilot Survey D-4
Table F-i. Profile of Participants F-3
Table F-2. Ranking of Inherent Characteristics F-4
Table F-3. Statistical Results of Survey F-5

7I

>1

ix

U.

1.0 INTRODUCTION

1.1 Overview and Objectives

System reliability characterization and prediction techniques, which
incorporate the combined effects of both hardware and software components

and which reflect frequency of total system failures during mission or
operating time, are needed by U.S. Air Force systems planners and procure-
ment offices. Most of the techniques currently available for predicting
the software contributions to overall system reliability rely on knowledge

. of historical failure-versus-time data to project future performance.
Although such methods can be effectively applied during the testing or

operational phase of a system life cycle, they are of limited value during
early development when alternate design and testing strategies ,-an be eval-
uated. The methodology developed during this study presents a mechanism
for predicting software reliability based on the inherent characteristics
of the software and the process used to develop it. Coimbined with existing
prediction techniques for hardware reliability, tiis technique will enable
systems planners and developers to assess overall system reliability at a
time when it can still be influenced.

A system can be defined as a collection of all equipment, facilities,

procedures, and personnel that together accomplish a specific mission or
task. Computers are an integral part of most modern systems and must be
included in any system analysis process. While computer reliability can be
determined by classical hardware reliability prediction techniques, the

"._. software embedded within it presents a new challenge to analysts who must
account for its effects on the system.

Virtually every system in both current and planned military inventory
has made or will make extensive use of computer technology. In nearly all
instances, the computer and its embedded software are not only part of the
system, they are essential to the performance of required operational mis-
sions. Military systems can be distinguished from many other computerized
systems by considering some of their special characteristics:

I Operational missions involve wartime activities that cannot be
thoroughly exercised in their true operational environment.

2 Overall military tactical and strategic plans and decisions require
accurate estimates of the probability of success of individual~syst eros.

3 Each system must be available when needed and Must operate corrtct-
ly from the time it is activated until it completes its mission.

In light of the special considerations Listed above, it is essential
that the prediction methodology encompass the entire syste1m. That is, all

system components must be accounted for within the technique. Overall
systems reliability is, therefore, defined in terms of its missions and the

i"

f -' ,,-. .- -, , -- -.- .. , -. .- -- .. , . . . , .- -. - . ..-. - . . , -, -..1

* specific functions it is required to perform. The following definition is

assumed throughout this report:

SYSTEM RELIABILITY - The probability that the required system will

perform its intended functions for prescribed mission(s) and time
period(s) in the specified operating environment.

Therefore, the objectives of the study were to develop
characterization techniques for predicting total system reliability and to
develop a practical methodology for use by system reliability engineers
early in the development cycle to evaluate various design approaches and
alternatives against system quantitative reliability requirements.
Recognizing the inherent differences between hardware and software, the
methodology was envisioned as consisting of separable, but analogous,
prediction techniques for each and a means for combining the results into a
single prediction.

Figure 1 illustrates these objectives. Specific attributes affecting
system reliability were to be characterized and used to evaluate hardware
and/or software reliability. The results would then be combined into a
single reliability prediction for the entire system.

As illustrated in Figure 1, the combined system reliability model

assumes that separate methods may be applied to hardware and software. r

Specifically, the method assumes that physical components (hardware) and

logical components (software) may be evaluated independently and then
combined as equally essential system components. That is, the system
reliability definition given earlier can be expressed as a function of

system hardware reliability and system software reliability:

SYSTEM HARDWARE RELIABILITY - The probability that the required hard-
ware will perform its intended functions for prescribed mission(s) ;iud

time period(s) in the specified operating environment, without causing

system outage or failure.

SYSTEM SOFTWARE RELIABILITY - The probability that required sottLwarc
will perform its intended functions for prescribed mission(s) and t i,
period(s) in the specified operating environment, without causing
system outage or failure.

Since hardware reliability techniques have bee well develope!d and

K . applied, the study primarily concentrated on the creation of a software

reliability prediction methodology. The approach taken was to conceot rat,
on the inherent characteristics of the software and its development pro-
cess. Hardware aspects of the problem were investigated only for sitna-
tions where software is interfaced.

1.2 Approach

The approach taken during this effort involved tlie pertormnan'e tut fiv.'
interrelated subtasks: a literature search, the characterizati,,n fi "
reliability factors, a two-pass survey, the development of a sy.ntem

K2

- -? ~ .::: il - .. .*.- .-. *-. .i.. : :..

, Hardware Attributes Software Attributes

. Environment - Intrinsic Factors

. ouality - Design Factors
* Strea Ratio - Development Factors

%: . Temperature Operational Factors
. Technology

Hardware Reliability Software Reliability
Methodology Methodology

System Reliability
LMethootogy

Figure 1. System Reliability Methodology_

F 3

4~~~~- -V*.

prediction methodology, and the validation of this method via comparison
with data collected from existing systems.

The literature search was used to quickly assess the state of the art
with respect to techniques presently available and to identify specific
software factors and characteristics that have a direct or indirect eff2ct
on system reliability. During the literature search, use was made of
several in-house and external data bases by a team of Martin Marietta
engineers, representing the Reliability, Systems, Software, and Product
Assurance Departments.

During and following the literature search, the many factors that were
identified had to be evaluated for their applicability to the planned
prediction methodology. Factors were categorized from several different
perspectives to determine those which had a significant impact on reli-
ability and those that had little or no impact.

The surveys were used to solicit and summarize the subjective opinions
of expert practitioners and to use the results in the development of the
methodology. A pilot survey was created and distributed based on the
results of the literature search, and its results were used to identify and

-. isolate the most significant software factors and development techniques.
A second survey based on the results of the pilot and the requirements of
the envisioned methodology was distributed to a much wider audience and was
used to determine the quantitative values needed by the methodology.

Methodology development was to be accomplished by the identification,

modification and application of existing techniques where possible and by
the creation of new techniques where necessary. The intent was to produce
a software reliability prediction technique that was compatible with hard-
ware prediction methods and that could be readily combined with hardware

.' reliability estimates.

Concurrent with development of the methodology, real data from oper-
ational military systems was collected. The data was to be used to val-
idate the methodology by comparing the actual reliability measured for
those systems to the reliability predicted by the methodology.

1.3 Results

More than 500 abstracts and 100 documents were reviewed during the
literature search. An on-line data base was constructed and used as a
reference throughout the study. Most of the existing software models were

reviewed, and many software attributes were identified and considered for
inclusion in the method.

In the process of reviewing the factors identified during the litera-

Lure search, it was found that software attributes could be viewed from
various perspectives. Many of the factors were, in reality, attributes of
an existing software product (Lines of code, number of branches, etc.).
Although such factors can be used for prediction purposes, quantitative

...- 2.. .- '.--.*..:5-',

relationships between the given attributes (e.g., number of branches) and
reliability were found to be non-existent or extremely difficult to quan-
tify using available data. Other factors were found to be characteristics

of the software, related to quality considerations rather than reliability.
Such factors as readability and flexibility are desirable quality character-
istics, but do not directly affect the ability of the software to perform

its intended functions.

A pilot survey was conducted to provide a ranking of the relative
impact of each factor on reliability. All of the factors which were

identified during the literature search, including those that were felt to
h be unrelated to reliability prediction, were included. The survey was

distributed to thirty hand-picked software experts who were asked to rank
them. Results were used to eliminate many factors from further considera-

tion. They were also used as the basis for a full-scale survey, which was
distributed to more than 300 software practitioners. In the full-scale
survey, respondents were asked to quantitatively evaluate each of the

factors listed with respect to its influence on software reliability.
Approximately 100 persons responded; the results were compiled and incor-
porated into the methodology.

WThe literature search also revealed that, although many models exist,

nearly all are concerned with the software reliability measurement and
prediction by extrapolation. Furthermore, most published works, concerning
software development factors and techniques, address the qualitative rather

4.,. than quantitative aspects of software. Development of the methodology,

therefore, required that a new technique be devised. Wherever possible,
the methodology uses approaches and techniques developed by other
researchers. The basic features of the methodology are:

I Applicable during early design/development

2 Applicable throughout the development cycle

3 Yields quantitative reliability predictions

4 Utility as a design and process evaluation tool

5 Uses the operational mission scenario as a basis for prediction

6 Compatible with MIL-HDBK-217D techniques and reliability defini-

tions.

A complete validation of the methodology could not be precisely

,. accomplished with existing reliability data. Although extensive amounts of
real data was collected during the effort, the completeness of the data was
found to be insufficient for making comparisons with the prediction results.
The methodology relates inherent functional characteristics and development
strategies to predicted performance. Historical data bases tend to include
only failure histories, not detailed developmental characteristics. Current
and recently completed projects do not yet have an established data base of
failure information. The methodology was, therefore, validated by qualita-

Btive comparisons to an actual system and through use of several detailed
examples.

5

2.0 LITERATURE SEARCH

2.1 Overview and Objectives

The primary objectives of the literature search were to identify and
classify hardware and software reliability factors and to identify existing
models and evaluate their applicability with respect to overall study
objectives.

2.2 Approach PW

The four major document sources included in the literature search data
base were the Rome Air Dvetopment Center customer files, National Techni-
cal Information Services, Martin Marietta (Orlando Aerospace) Technical
Information Center, and internal technical files. More than 500 abstracts
were screened for the literature search.

Five team member ; were assigned different areas of responsibility in
the literature search and a .et of articles to be covered. As material was
reviewed, it was entered into a data base with the reviewer's annotations.
The data base constructed during this phase was subsequently used as a ref-
erence and source of information throughout the performance of the study.

Over 100 of the screened documents were reviewed in depth for data
pertinent to the study. These were abstracted and commented upon; the
results were entered in the study data base. Appendix B contains the

title, author, date, source, and abstract of each document reviewed.

2.3 Results y-

2.3.1 Reliability Modeling Approaches

In the course of the literature search, software reliability models of
three different categories were examined: measurement models, estimation
models, and prediction models. One of the primary findings of the litera-
ture search was that the vast majority of software reliability effort has
historically been expended on creating methods for measuring current
software reliability and extrapolating that data to estimate the future
reliability of existing software packages.

Two measurement models, the Hecht Measurement model and the Nelson
model, as well as 19 estimation models were examined. The majority of
estimation models are modifications of either the Moranda model or the
Markov model. References to three prediction models were found: the Motley
and Brooks model; the McCal, Richards, and WaIters model; and the Halstead
model. Very little was found concerning the prediction of a software 0,.
package reliability where no historical failure/debugging and run-time data
exist from which to estimate and extrapolate. The reliability models

reviewed during the literature search are listed in Table I.

7
U,

b--°...,, 0 t',,,,..3..-...-.-".......,.............•...-..'.. -..- '-.--.- .•.. '.' ",.-. '... '. .-... .

TABLE I. Software Reliability Models.

Reliability Measurement Models

- Hecht measurement model
- Nelson model

Reliability Estimation Models

- Reliability growth model (La Padjla)
- Mills model
- Rudner model
- Jelinski-Moranda de-eutrophication model
- Jelinski-Moranda geometric de-eutrophication model
- Jelinski-Moranda geometric poisson model
- Schick-Wolverton model
- Modified Schick-Wolverton model
- Shooman exponential model
- Weibull (Wagoner) Model
- Goel-Okumoto Bayesian model
- Littlewood-Verrall Bayesian model
- Shooman-Natarajan model
- Shooman-Trivedy Markov model
- Shooman Micromodel

- Littlewood Markov model
- Littlewood semi-Markov model
- Moranda a priori model
- Hecht estimation model
- MUSA model

Reliability Prediction Models

- Motley and Brooks model
- McCall, Richards, and Walters model
- Halstead model

I.%

,8

, , ' -. '- , .'- .>? '. . _ , :.- : ',. .,:,.¢..i't. . .:' .<" .- ..' .-.. ,-..,--..

The concensus of most software reliability experts is that it is
necessary to estimate the number of flaws remaining in a software package
to extrapolate or predict its reliability at a given point in the future.

Also evident is that the vast majority of experts in this field do not
believe that software has a constant failure rate analagous to the failure

rate of hardware represented by the bottom of the bathtub curve. The
opinion is held that the software failure rate continues to decline
asymptotically toward zero.

2.3.2 Hardware Reliability Factors

Hardware reliability prediction techniques have been developed and
refined over the last 25 years. Current hardware techniques have been
proven to be very effective as reliability design tools and for evaluating
alternative design approaches against quantitative reliability requirements.
The factors which impact hardware reliability are well known to reliability

* -' engineers.

Hardware reliability is directly dependent on many factors, but the
major categories are:

I ENVIRONMENT - Stresses imposed by the environment in which the
hardware is to function

2 QUALITY - Measure of the relative goodness of a given part in com-
parison to similar parts

3 STRESS RATIO - Ratio of applied electrical stress to the rated
stress (voltage for capacitors, power for resistors

"V and transistors, and current for diodes)

4 TEMPERATURE - Ambient temperature that the part is exposed to while

in an operational mode

5 TECHNOLOGY - Generic part type.

The most widely used vehicle for predicting electronic hardware reli-
ability is MIL-HDBK-217D. Some attributes may affect a given part type
considerably more than another part type. A separate failure rate model is
supplied for each generic part-type to account for these differences.

Table 2 illustrates the extensive characterization of the PRODUCT which is
required to predict hardware reliability. In contrast, software reliability
can be seen to be much more PROCESS dependent. Although software factors
such as complexity, number of interfaces and size might indicate various
degrees of inherent error proneness, it is the process which ultimately
drives the number of errors which remain in software. Other than the
stresses imposed by the input domain, software is obviously not subject to
the degradation effects of environment and aging.

*5 9

S%

TABLE 2. Factors for Part Failure Rate Models
Discrete Semiconductors and Capacitors.

Factor Description

Common Factors - Used in all or many part categories

E Environment - Accounts for influence of

environmental factors related to
application categories

Q Quality - Accounts for effects of
different quality levels

Discrete Semiconductors

A Application - Accounts for effect of
application in terms of circuit

function

* R Rating - Accounts for effect of maximum
power or current rating

C Complexity - Accounts for effect of
.0 multiple devices in a single package

S2 Voltage stress - Adjusts model for a
second electrical stress (application
voltage) in addition to wattage

F Frequency and peak operating power

factor

T Temperature - Accounts for effects of
Stemperature

M Matching networks - Accounts for effects
of type of matching networks

-'..

1 10
%%

e 6NPrIq 'a "-

- 4. ~ .*~

TABLE 2. Factors for Part Failure Rate Models
Discrete Semiconductors and Capacitors (Cont).

Factor Description

Capacitors

SR Series resistance - Adjusts model for
the effect of series resistance in
circuit application of some electro-
lycic capacitors

Cv Capacitance value - Adjusts model for
effect of capacitance related to case
size

C Construction factor - accounts for
effects of hermetic and nonhermetic
seals on CL and CLR capacitors

CF Configuration factor - Accounts for
effects of fixed and variable con-
structions on CG capacitors

4.

%~ %%

N N 1VA

2.3.3 Software Reliability Factors I
The literature search revealed an intense interest within the industry

to identify software characteristics which impact software reliability.

In general, the factors identified during the literature search could be

categorized according to their pertinence to a particular phase of the
overall software life cycle. Specifically, the natural categorization

suggested by the literature search was primarily chronological:

o Software Product Development - These factors are introduced during

the development phase. They are essentially design and code tech-

niques.

o Software Product Functional Performance - These factors measure the

software's response to the requirements specification.

o Software Initial Operation - These factors relate to the usability
of the software product.

o Software Product Revision - Most software is expanded or otherwise
altered during its useful life. These factors influence the reli-
ability of the modified product.

o Software Transition - These factors address the characteristics of

software that allow it to adjust to changing hardware environments.

The remainder of this section describes the software characteristics

identified during the literature search. Although they are presented as

categorized above, it should be noted that several re-categorizations were

performed before the list could be used as factors within the methodology.
First, the factors were re-categorized into inherent, design/development

and application characteristics (see Section 3.0). Next they were priori-
tized in accordance with their relative influences on system reliability

(Section 4.3.1). Finally, the most significant factors were re-categorized
again (Section 4.3.2), this time to separate the inherent characteristics

of the software PRODUCT from the error avoidance and error detection

characteristics of the software development PROCESS.

Software Product Development

Software reliability will only be achieved if it is a requirement. that
is contractually specified and subsequently designed and coded into the
software product during the development phase of the life cycle.

Virtually all sources studied during the literature search concluded

that reliable software is achievable only by the application of a sound

engineering approach. Although different authors favor ditferent tech-

niques and methods for developing reliable software, most converge on
factors that: •.

12

V "..,.. v --... . , '-.. ,,%.

I Facilitate early recognition of problems

2 Increase the probability of fault detection

3 Simplify fault isolation

4 Isolate functional and logical activities.

The characteristics or factors most commonly addressed recognize and
support the current state-of-the-art software development techniques. In
the following list, complexity is the single most-important factor relating
to software reliability, while all others are agreed-upon methods of reduc-
ing it:

I Complexity - This is a negative factor that tends to make computer
programs incomprehensible. It includes much more than other terms

such as "readability" or "modularity." Complexity can be introduced
into requirements, design, code, and even test activities. To
avoid, detect, and correct faults prior to the operational phase
when reliability will be needed, the software must be reviewed,
discussed, inspected, and tested by human beings of limited capacity
to recognize very complex interrelationships. Complexity seriously

impedes and precludes these activities.
0,

2 Top-down Functional Decomposition - In one way or another, most

authors suggested functional decomposition or functional threading

to minimize complexity.

3 Modularization - The segmentation of computer programs into single-
purpose, single-entry, single-exit modules was the most popular
technique discussed in the literature.

4 Hierarchical Design - Most authors acknowledged the significant
reduction in complexity that can be achieved by enforcing a hier-
archical structure of module segment calling and controlling
relationships.

5 Structured Approaches - The advantages of structured techniques are
well known. Their impact on software complexity is clear, but as

of now, unquantifiable.

Software Product Functional Performance

The factors discussed in this section relate to the degree to which a
r% software product meets its stated performance requirements. Results of the

literature search indicate a consensus that the following software factors
are significant:

I Correctness - Ability of the computer program to accuraf-ely perform
all ot the functions required by the specifications.]

-V2. 13 I
W. : -. . : - _ -. , . :- , . , - . .. ,- ..%

2 Validity - Ability of the computer program to provide the perform-
ance, functions, and interfaces that are sufficien for beneficial

application in the intended user environment. The distinction
between this and the definition of "correctness" should be noted.
Whereas correctness checks for accomplishment of the specified

objectives, validity pertains to specifications as well as result-
ing software.

3 Generality - Ability of the computer program to perform its intend-
ed functions over a wide range of usage modes and inputs, even when
a range is not directly specified as a requirement.

4 Testability - Characteristic of a computer program that allows its
functional requirements to be logically separated to allow st-,p-by-
step testing of each aspect of the program.

5 Efficiency - Measure of the use of high-performancc algorithms and
conservative use of resources to minimize the cost of compute-r pro-
gram operation.

Software Initial Operation

These factors influence the performance of the software ' ring the
operational phase. In this section, the phrase "initial oi-.rati n" is used
to isolate those characteristics of software that pertain only to the
original computer program that was specified and developed. It does not

. / include those aspects that relate to the software's ability to be maintain-

ed. Those aspects will be covered elsewhere. The following factors were
identified in the literature as being pertinent to the initial operation of

a computer program:

I Usability - Characteristic of software that is indicative of its

responsiveness to human factors considerations. It is a measure of
how well it has used natural and convenient techniques for human

operation.

2 Resilience - Sometimes referred to as ROBUSTNESS or in hardware
terminology, SENSITIVITY; this is a measure of a computer program's
ability to perform in a reasonable manner, despite violations of
assumed usage and input conventions.

3 Fault Tolerance - Ability of the computer program to perform
correctly, despite the presence of error conditions.

Software Product Revision

Software reliability is concerned with the usage of computer programs
over some operational life in a specified operational environment. The
existence of totally unmodified software in the operational environment is

I '-,S,.'

,, .,. , 14 ,,

% ;.,-",-

- --

'

.

a rarity if, in fact, any exist. The literature search revealed several
pertinent factors:

1 Clarity - Ability of the computer program to be easily understood.
It is a measure, not only of the computer program itself, but also
of its supporting documentation.

2 Readability - Measure of how well a skilled programer, not the
original creator, can understand the program and correlate it to

the original and new requirements. 2
3 Maintainability - Catch-all term used to summarize all the features

of a computer program that allow it to be easily altered or
expanded. It considers all of the other factors shown in this
list.

4 Modifiability - Measurement that includes consideration of the
extent to which likely candidates for change are isolated from the
rest of a computer program. As an example, the isolation of input
and output routines that are hardware- or human-dependent would
increase the program's modifiability since these are very vulner-
able areas to post-delivery modifications.

5 Flexibility - Measure of the computer program's design, which
allows it to perform or to be easily modified to perform functions
beyond the scope of its original requirements.

Software Transition

Software transition is the process of changing the environment of a
software product either by installing it in another system, in another
application, or in another software product. Similar to hardware,
thoroughly tested software can be regarded as a standard part that can be
incorporated into another application.

As software is better understood by nonsoftware personnel, it is be-
coming evident that many standard hardware techniques and methods can be
applied to its usage. One idea that seems to be gaining in popularity is
that of the development and use of general purpose software that has been
identified as having high reliability. This idea is similar to the usage
ot Hi-Rel parts in the development of new hardware systems. Some of the
software factors discovered during the literature search that seem to
indicate the degree of software transition reliability are listed below:

I Portability - Characteristic of computer software that allows it to
be used in a computer environment different from the one for which
it was originally designed. Use of standard high-level languages
is one of the ways to increase portability.

15

--

%"" " """'"" "" ''- ,,. '" " - ' "' '".Y "" " ". .•- -" '" ."-' '.-'."o."-"" - - - '- "- . - -"-

2 Reusability - Measure of the extent to which a computer program can "
be used in a different application from the one for which it w .s

developed.

3 Interoperability - Measure of the ease by which a computer program

can be made to interface with other computer programs.

2.4 Conclusions

The literature search, while providing extensive background informa- -

tion on research already accomplished, revealed that no existing model can

be directly applied to the problem of reliability prediction prior to

development. It was concluded that the methodology required would have to
be developed during this study and would require the usage of parameters I
available to the reliability engineer at the beginning of the development

cycle.

It was also concluded that the natural (chronological) categorization

evidenced by the literature search did not adequately separate software

product characteristics from software development process characteristics.

Many of the factors identified are, in fact, measures or qualities of the

resulting software product, not determinants of its reliability.

16.

,...-.....................................

- -1'% -,--. -. - r .- ,s,..' ,:-x- -'.. - , .w v -- x N rJ d r.wr'w,,ww--rIrr. -- r--- 4- ,', - r+ ,m

3.0 CHARACTERIZATION TECHNIQUES FOR RELIABILITY PREDICTION

3.1 Overview and Objectives

Concurrent with the literature search discussed in Section 2.0, a pre-
liminary methodology was developed. The objective of this phase of the
study was to reevaluate the factors and characteristics investigated during
the literature search and to characterize them in a manner consistent with
the methodology.

3.2 Approach

The approach used during this phase was primarily analytical. First,
N', the overall system aind mission ceilability characteristics were investigated

to establish the rationale and assumptions of the model. Secondly, the

software characteristics identified during the literature search were re-
evaluated in light ot the anticipated methodology which recognizes the
significant relationship between the reliability of the software product

and the pLOcesS which creates it. The factors already presented in Section
2.3.3 were simultaneously purged, expanded, and re-categorized (Table 3) to
facilitate their use in the model.

3.3 Results

Reliability prediction of total systems, which includes the effects of
embedded software, must simultaneously consider the effects of both hard-

r ware and software. The analysis performed during this phase verified that,

although they are closely related, hardware and software can be evaluated
independently for purposes of reliability prediction. Furthermore, the
analysis concluded that mission reliability prediction should be the pri-
mary goal of the methodology.

3.3.1 System Reliability

System reliability, as previously defined, is the probability that the
required system will perform its intended functions for prescribed missions
and time periods in the specified operating environment. Before describing
the details of the approach, it is necessary to eliminate the ambiguities
ot the detinition itseLt. Furthermore, it is necessary to constrain the
problem definL t1on to a more solvable and practical one.

ridMssion ReliabLiUt.

First and oreumos , it shouLd be recognized that although a given
--ystem may have var ious operat Lonal missions, the motivat ion tor performing
a reliability pr4.'liction is to obtain a quantitative measure of the likeli-
hood of success of a specitic mission. Although the prediction and analy-
sis of availability, maintainability, and supportability require considera-
tion of all possible uses of a given system, the methodology presented
herein is directed toward the prediction of system reliability for a

.

17

-'*4 e.*' %

TABLE 3. Software Characteristics.

Operational Requirements

- Predominantly control -'t
- Predominantly computational

- Predominantly input/output

- Predominantly real-time
- Predominantly interactive A

Environmental Requirements

- Number of hardware interfaces.
* - Number of software interfaces

- Number of human interfaces 4

Size Considerations

- Number of functions performed

- Overall program size
- Number of compilation units
- Maximum size per unit

Complexity Considerations

- Number of entries and exits
- Number of control variables
- Use of single-function modules

- Number of modules

- Maximum module size

- Hierarchical control between modules

- Logical coupling between modules
- Data coupling between modules

Organizational Considerations

- Separate design and coding
- Independent test organization

- Independent quality assurance

- Independent configuration control
- Independent verification/validation
- Programming team structure

- Educational level of team members
- Experience level of team members

V7_.

18

-N

f"-f '-' -'t* .. .'- . ft' . - ".--f L'' . ' ..L -. ,.-.-.- ' ' " .- ' ,. " .. ,-.. . ' ' ' ' .. ' .,".'. . ft*. .' ,'-. f t ft ' , .- .ft ft ft

"- " - % ", . - . "t~ . ""* f t "" - " ". -" " , * f t"" f t"
°

,f"*t f t" . " . , "" ', "" ' ' - '"f"% ""t
' '

' k
• "

% '

TABLE 3. Software Characteristics (Cont).

Methods Used

- Definition/enforcement of standards
- Use of High Order Language (HOL)
- Formal reviews (PDR, CDR, etc.)
- Frequent walkthroughs
- Top-down and structured approaches
- Unit development folders

- Software development library
- Formal change and error reporting
- Progress and status reporting

Design Approach

- Modular construction .
- Structured design
- Structured code

Tools Used

- Flow charts
- Structure charts

- Decision tables
- HIPO charts

Documentation

- System requirements specification
- Software requirements specification
- Interface design specification
- Software design specification

- Source listings
- Test plans, procedures and reports
- S/W development plan
- S/W quality assurance plan
-S/W configuration management plan

- Requirements traceability matrix
- Version description document

- Software discrepancy reports

Duty Cycle

- Constant intssion usage
- Periodic mission usage
- Infrequent mission usage J-A

19

% . .-.
%" % % %
[%

TABLE 3. Software Characteristics (Cont).

Environment

- Variability of hardware

- Training level of operators

- Variability of input data

- Variability of outputs

- Degree of human interaction

Non-operational Usage

- Training exercises

- Periodic self test
- Built-in diagnostics

Modification/Error Correction

- Performed in the field
- Performed at depot
- Performed at factory

Qualitative Characteristics

- Correctness

- Validity
- Generality
- Testability
- Efficiency/economy

- Resilience (Robustness)

- Usability
- Fault tolerance-"

S- Clarity
- Readability
- Maintainability
- Modifiability

- Flexibility
- Portability
- Reusability

- Interoperability

20

specific mission. While the prediction of multimission system reliability
is not specifically addressed, it should be noted that the determination of
single-mission system reliabilities is the primary and most critical
element of multimission predictions. Where such predictions are required,
the method presented could be applied to each defined mission; these
results are combined mathematically using classical statistical methods.

System Definition

Like most things in nature, knowledge of a system can be obtained
through a detailed understanding of its composition. Specifically,
knowledge of component characteristics that comprise the system and their
interactions with each other is equivalent to knowledge of the system.

In the case of computerized systems, the initial decomposition con-
sists of those components that may be categorized as hardware, software, or
human. Of these, software is the least understood quantitatively. Hence,

_N the methodology developed concentrates on the contributions of software to
the overall reliability of the system. It is assumed that the prediction
and measurement techniques currently being applied to hardware systems are

* adequate for the description of the hardware contributions to system reli-
ability. Furthermore, it is assumed tnat human participation in the mis-
sion accomplishment is limited to controlling the hardware/software
components by providing input data or reacting to outputs as necessary. As
such, the human component can be considered as part of the operational
environment, not part of the system. This does not impose a limitation on
the methodology, but rather is a logical way of representing an automated
system. Therefore, the methodology considers a system to be comprised of
hardware and software components.

Interactions of System Components

Knowledge of the interaction of system components with one another is
critical to the understanding of the system itself. There are two major
categories of interaction that must be addressed. The first involves in-
formation exchange that provides necessary inputs to a component. The
second involves behavior modification, whereby one component influences the
manner in which another accomplishes its allocated requirements. The dis-
tinction cao be made by considering that the first category allows one
component to alter the environment of the other by presenting new conditions

for it to operate upon, while the second category allows a component to .

actually alter the other component. This is purely an abstraction and does

not represent the physical modification of system components, but instead,
a logical modification of the system definition. For example, the exchange

of commands arid/or data between the hardware and software components of a

system fail entirely in the first category, even when the exchange is
. entirely incorrect. The ablmity of a component to perform its intended

functions despite erroneous inputs is usually referred to as its robustness,

and is somewhat measurable. On the other nand, fault-tolerance impl es

that a fault has occurred and that the system will self-adjust to meet its

Li' 21

r-7-. *- - -

requirements. That is, the system is automatically altered to a new con-
figuration.

%U
Although considerable knowledge is known about active and dormant

hardware redundancy and mathematical techniques have been devised for
measuring its effects, this knowledge is not directly transferable to soft-
ware components. Identical hardware components can be redundantly config-
ured to increase reliability, but identical software components will react

identically to the same environment. Redundant software must be different
software, and the automatic replacement of a portion of software when it
fails is tantamount to a redefinition of the system. The situation where
the occurrence of a hardware failure causes a software compensation (or
vice versa) adds a degree of complexity, which is currently beyond the
state of the art of practical measurement. Extensive work is currently
under way with respect to fault tolerance, both on a subcomponent as well
as a system level. There are many respected system designers and analysts
who feel that fault tolerance is the ultimate answer to system reliability
problems. The methodology does not directly incorporate software fault
tolerance considerations but does support such analyses. First, the MarkovA:. technique allows the analyst to incorporate redundant software into the
overall model in the same manner as the other software components. The
path probability of the redundant software is simply the probability that
the primary software component will fail. Secondly, when the model is
exercised, sensitivity information, in the form of relative utilization, is

produced for each software component. The analyst can, therefore, use the
model to identify candidates for application of fault tolerance techniques.

Conclusions Concerning System Reliability

An automated system can be described by two major subsystems, its
hardware and its software, and that for a given system configuration, the

interaction between these components is limited to information exchange.
We can, therefore, analyze them independently by considering the hardware
interface as part of the software's operating environment and vice versa.
By restricting our analysis to mission-critical hardware and software, we
can clearly see that for a particular mission, a combined hardware/software
system can be represented by the serial configuration of a hardware and
software component and that the system reliability is simply the product of
the two component reliabilities as determined from their respective con-
figurations and environments.

3.3.2 Hardware Subsystem Reliability

Both the literature search and the preceding analysis confirmed that
hardware and software reliability prediction could be accomplished in-
dependently. Therefore, it was decided that the methodology would concen-

•rate exclusively on software reliability prediction. System hardware

reliability prediction is adequately accomplished via MIL-HDBK-217D.

...

-A...,

4

22
.% 4

• %............ %. %.f. . , . . .

3.3.3 SoLtware Subsyst.em ReLtabiLity -

Unlike hardware, soiLware tatlures are not physical but rather logical

in nature. Software does noLt degrade with age, nor do,!s it degrade due to
the physical stresses usually considered in hardware reliability predic-
tion. The reliability of the software is the direct result of the process

used to produce it. If the development process allows errors to be made
and go undetected, the software product will eventually fail. During this
phase of the study, the data collected during the literature search was
expanded and re-categorized in order to isolate those characteristics which
affected the quality, albeit reliability, of the development process. The
overall intent was to eventually identify intrinsic or inherent factors
which influence the difficulty of producing software and to identify
development and design techniques which may be applied to increase the
liklihood of avoiding and detecting errors.

Table 3 presented the expanded list of software factors which was
created. The list was constructed specifically for use as a tool for

further data collecting and as a format for the Delphi survey performed
during the next phase of the study. Since one of the objectives of the
survey was to rank the effects of individual factors, they were presented
in subgroups as shown in the table. The subgroup titles are
self-explanatory. They were chosen as potential categories from which to
determine pi factors for use in the model. Although this categorization
scheme was, once again, revised as a result of the tirst survey, it formed

the basis for the tinal turin used within the methodology. -' '

Section 4.0 ot this report discusses the survey in detail. The survey
torms, insLructions, and results are included in the appendices. Section
5.0 presents the prediction methodology, and the manner in which the soft-
ware factors ar, incorporated.

3.4 Conec usions

The primar y conclusion from this phase of the study was that soft-
ware reliability prediction could be accomplished in a manner similar to
classical hardware techniques. That is, the overall software reliability
predict ion can be acconip Lished by decomposing the software inLto its
component parts, predict ing the reLiability of ench component, and math-
ematically combining the individual predictions. It was also concluded
that, whereas hardware reliability prediction is primarily dependent on
PRODUCT characteristics and physical construction, software reliability
prediction is heavily influenced by PROCESS characlt ristLics and mission--
dependent path probabilit tes. It was also di-termined that too many
factors were be-ing considered and that the pilot Furvey should be used to "
identify those factors most critical to the mthodology.

23

%

%".%

?" %'

, . , - . .'. .' '- ,- ,', :- .- "-.-- . . -. . .. -.. -.. "

4.0 TWO-PASS SURVEY

4.1 Overview and Objectives

As a result of the literature search and the subsequent characteriza-

Lion phase, an extensive list of software factors and attributes was com-

piled. The surveys were conducted to identify the most significant factors

. and to quantity their effects on reliability. The preferred approach was

to quantify the factors based on historical software error data. It was

found, however, that it was not possible to derive the required quantitative

information from currently available data. Specialized data collection and
~experimentation efforts are required to fully quantify the factor effects.

4.2 Approach
qA

The approach taken was to divide the survey into two phases. First, a

pilot survey was accomplished to identify the factors most significant to

reliability prediction. Second, a full-scale survey was conducted to quan-

tify the effects of those factors. Since the phases of the survey were
performed sequentially, the remainder of this section is outlined to separ-
ate and highlight the objectives, approaches and results of each of the

surveys.

4.3 Results

4.3.1 Pilot Survey

Objectives

The literature search produced an abundance of characteristics and
. development techniques that relate to software reliability (Table 3). To

learn more about these factors, a pilot survey was conducted. The objec-
tive of the survey was to obtain a qualitative ranking of the software

factors, characteristics, and techniques in terms of their impact on

software reliability. An implied objective was the elimination, for
further consideration, of those factors perceived as having little or no
impact.

Approach

A survey Iotm was devised using the factors and attributes identified
during the literature search. They were categorized into the groups
alr.ady described in Section 3.0. The survey form was actually a matrix
with the factors forming the rows of the matrix. Eight columns were
included. The first was titled "System Reliability Impact," and the other

seven were labeled to correspond to the major software error categories:

- Specification Errors

- Design Errors

25

.4V.

-V,
%

ALA AA ..-..- , ,,.........:..* , ._ N

- Coding Errors

- Software Interface Errors

- Hardware Interface Errors

- Human Interface Errors

- Capacity Problems.

Participants were asked to rate the degree of correlation between each of

the software factors listed in the rows of the matrix and each impact area

listed in the columns. The four possible ratings were H (high), M (medium),

L (low), and 0 (zero) correlation. It is important to note that the par-

-) ticipants were asked simply to indicate a correlation level and not a

positive or negative relationship. The goal was to identify those factors

that have a significant effect on reliability -- not to judge whether the

effect was good or bad. The pilot survey form and its instructions are

included in Appendix C.

Results

The survey was distributed to 30 hand-picked experts who were selected

for their known interest and expertise in software development. Twenty-

three responded. Some confusion resulted from the decision to design the

form without provisions to distinguish positive and negative effects. Many

participants were uneasy with assigning the same rating to a factor that

they felt had a high positive influence on reliability and a factor that
they felt had a high negative influence. Fortunately, since the distribu-

tion was very limited, it was possible to clarify the intent through

personal contact.

The responses were recorded in a computerized data base and converted
into numerical values of nine, five, one, and zero for high, medium, low

and no correlation, respectively. Averages were computed for each factor,
each group of factors, and each error category. They were then ranked
numerically by averages within each category and by overall average.

Appendix D presents the results of the analysis performed. Of the

factors themselves, interface and requirement specifications were rated as

having the greatest impact on system reliability. Many of the participants
remarked on the form that complete and unambiguous specifications have a

strong, positive effect on reliability while incomplete or incorrect ones

have an equally strong, negative effect. Frequent walkthroughs were rated

as the most influencial technique, followed closely by the definition and

use of predefined standards and conventions. Curiously, the use of

standards rated slightly higher than structured approaches and formpl
reviews. The inherent factor having the highest rating was real-time

applications. Since it is generally felt that software required to operate

in real time tends to be more complex than other applications, this result

was not surprising.

The ranking of the results also indicated that many of the factors

were not felt to be significant to reliability prediction. Most were

26

4-,4-A

obviously unrelated but included in the survey for completeness and object-

ivity. Factors such as economy, readibility, flexibility and most of the

other -ilities were rated very low. Although each is significant, they are

attributes of the finished software product, not determinants of its reli- I
ability. Some other lowly rated factors were not so obvious. The level of

training and experience of the operational users was not considered sig-

nificant. The educational level of the software developers was rated much

lower than their experience level. .

As a result of the pilot survey, many factors were eliminated from

further analysis and those that remained were rearranged into the categor-
ies that would be utilized in the methodology. Specifically, it was noted
that software factors could best be categorized into groups of inherent and

developmental characteristics. The developmental characteristics, in turn,

" . could best be described in relation to their ability to avoid errors or to
detect (and correct) errors. This categorization was reinforced by the

". results of the pilot survey.

4.3.2 Full-Scale Survey

Objectives

The pilot survey revealed the characteristics of software that have a

-2 significant impact on reliability. It was necessary, however, to quantify
these characteristics and factors in some way; therefore, a second, full-

OA scale survey was conducted. The objectives of the full-scale survey were
to obtain a quantitative ranking of the software factors and to determine
values for the Darameters in the methodology.

Approach

Using --he results of the pilot survey, the survey form was redesigned
to include only the significant software factors and to reflect the struc-

Lure of the methodology being developed. The inherent characteristics and
development techniques of software were combined with development phases
and error types to oroduce the new questionnaire.

The survey was sent to approximately 350 persons who are involved with
sofLware and/or reliability. To avoid ambiguity, detailed instructions and
definitions of all terms were included with the survey.

The full-scale survey form and its instructions, consisting of five

pages, each different, are included in Appendix E. The first sheet listed
several groups of inherent characteristics of software. Participants were
asked to rank the groups in order of importance to system reliability. The
individual. characteristics were also ranked within the groups.

-he same inherent characteristics were listed again on Sheets 2 and 3.

T ere_ wer: four columns on Sheet 2, representing four phases of development.
The enLrv 'wr each row and column combination represented the relative

27

C. * ..".

quantity of errors introduced by that particular tactor during that par-
ticular development phase. The four columns on Sheet 3 represented four
types of errors. The entries on that sheet indicated the percentage of

each type of error present due to each characteristic.

The column headings on Sheets 4 and 5 were the same four error Lypes
from Sheet 3. Whereas Sheet 3 was used to quantify the distribution of
error types caused by inherent characteristics, Sheet 4 listed development
techniques and was used to quantify the effectiveness of each technique in
avoiding each error type. Sheet 5 was similarly used to quantify the
effectiveness of error detection mechanisms. The intent was to quantify
the effectiveness of the software development process. This intent was
deliberately hidden from the participants to avoid individual bias and
pre-supposition. In fact, the participant was asked to treat each sheet
independently from the others.

Unlike the pilot survey, this pass included a cover sheet to record
the general educational and experience level of the respondent. In addi-
tion, the respondent was asked to identify his primary area of interest and
general qualifications. The respondent was also invited to comment on the
adequacy and relevancy of the survey itself.

Results

naApproximately 100 responses were received. Each response was recorded
in a computerized data base and combined statistically with all other
responses. Analysis of the data included on the cover sheet indicated that
the participants were highly qualified software professionals. Seventy-
seven percent work in the software industry, 18 percent work for government
agencies, and the rest are associated with universities. Seventy-three
percent of those responding have at least 10 years experience in software
development, and more than half have a graduate degree. The detailed pro-
files are presented in Appendix F as are all other results of the survey.

The rankings on Sheet I confirmed the pilot survey results that des-
cribed the relative importance of the inherent characteristics of software.
Modules that involve predominantly real-time implementation are ranked as
most critical to software reliability. Control and interactive modules
were ranked second in importance. The type of software seen as having the
least effect on reliability is a predominantly computational application.

According to the survey, the number of interfaces is more critical to
reliability than the type of interface (hardware, software, or human). The
complexity of the operations performed by a module was deemed more important

%. than the quantity of operations.

The most effective error avoidance mechanism, according to the survey
is the rigid control of requirements and design specifications. Structured
design approaches were likewise rated to be highly effective. Since the
pilot survey had been used to eliminate less important factors, nearly all

28

I4I

avoidance mechani sms I ist ed were rated as being eftktt ive . Surpri sing ly,
the lowest ranked avoidance mechanisms involved configurt ion conL rot.

The results ind icated that frequent walkt hrotighs are the most
effective means of detecting errors, followed closely by infornal ti it
level testing. Quality audits were ranked considerably Ie ss fftL'ct iv'.
Most formal reviews were rated equally effective with the Critical Design -
Review being identified as having a slight edge on error detection

capability. All of the testing procedures were rated about the samne.

4.4 Conclusions

The surveys performed were invaluable to the development ol t,. suit-
ware reliability prediction methodology. The pilot survey served to etiec-

Lively isolate those factors which truly affect reliability; the lull-scale-
survey enabled a preliminary quantification of the eftectS of those factors.

StaListica t analysis of the survey data provided initial approx imaLdti,),

of the quantitative aspects of the software tactors used in the prediction.

methodology. As was indicated earlier, the participants in the survey were
highly qualified professionals. In the absence of precise and exticnsive
measured data, their collective opinions were used as quantitative estimates

of the effects of software factors on its reliability.

The results of the full-scale survey were, therefore , used as .t he
basis for the calculation of inherent reliability and the developmental).

factors used within the methodology. For purposes of using the mothodology,
b-st , worst , and nominal vatties are presented for each factor. TIe se
valte s -wre statistically derived from the survey results.

; "

"S--

* ',.'.

5.0 RELIABILITY PREDICTION METHODOLOGY

5.1 Overview and Objectives

System reliability prediction is essential to planners and d,'signk-rs

of military systems. Unfortunately, current methods of evaluation either
ignore or simplistically incorporate the software contribution to systi.m
reliability. Those methods that do account for software use test results

as a means of mathematically predicting its reliability. In the event that

the software contribution causes system reliability to degrade below accep-'L
able levels, testing must be continued to effect improvements.

- The objective of this reliability prediction methodology is to provid"

a method for predicting system reliability, including both hardware an..

sottware effects in the beginning and throughout development. Proper u..e

of the methodology will enable both the procuring agency and the dev.cl[oper
to predict operational reliability at a time when it is still possible to

affect it.

5.2 Approach

Hardware reliability prediction is adequately described by MIL-HDBK-

217D and its supporting documentation; therefore, the methodology described

here concentrates on the prediction of the systemi's software component.
Essentially, the prediction of software module reliabilities is based on

inherent factors of their operational mission and size. They are adjusted -.

by developmental factors estimated from the design, development, and test-
ing methods that will be employed during the development process. These

component reliabilities are then mathematically combined via a Markov tech-
nique, which accounts for the duty cycling effects of logic paths that are

being randomly exercised in accordance with functional mission requirements.

After a single software reliability figure is obtained, the combined reli-

ability is computed as though hardware and software are series components

of the overall system.

5.3 Results

Performing a reliability analysis of a system prior to its development
generally involves successive system decompositions. This continue until

a componentL level is achieved, where reliability information is available,
followed by mathematical reconstruction of the system to determine overall
system reliability. Although software must be decomposed and evaluated ..

differently from hardware, the methodology is similar. System decomposition

is performed in accordance with currently used techniques. When the de-

composition reaches a ,ubsystem that requires embedded software, the soft-

ware must be identified as an entity and treated as a subsystem component.
- While the rest of the hardware components are being evaluated via classical

methods, the software portion can be evaluated using the methodology

described here. Resulting information can then be used in the mathematical

reconstruction of the system reliability prediction. This approach

31

%.%

.- allows the independent calculation ot hardware and software subsystem reli-

abilities, with a minimal divergence from classical reliability prediction

techniques. It also isolates the methodology used for software reliability
prediction so that it can be easily modified, expanded, or replaced as new

methods become available.

The remainder of this section describes those procedures that must be

followed to predict hardware and software system reliability. The well-

known and practiced methods of MIL-STD-785B are implemented for the entire

system. However, software is considered a separate entity for which reli-

ability must be specified, allocated, predicted and assessed. This is

illustrated in Figure 2.

MIL-STD-7858

RELIABILITY

REQUIREMENTS

"MIL-HDBK-217D SW METHODOLOGY

* ELECTRONIC COMPUTER

EQUIPMENT SOFTWARE

~~~SYSTEM RELA BLTY SPECFCATION , ALOCA TION , '.
PREDCTION MEASUEME,. AND ASESMENT

Figure 2. Classic Approach - New Ingredient

5.3.1 System Reliability

System reliability is the probability that the system will perform its

intended function for the prescribed mission and time period in the speci-

fled operating environment. At the highest level of decomposition, it is

necessary to define the specific mission that the system is required to

perform. As a minimum, most systems can be considered to be either in an

operating mode or a nonoperating mode. Many systems operate in a multimis-

sion or multiphased scenario. Since the ability of a system to perform its

intended function is conditional, depending upon its availability at the

time when the function is required, nonoperating failure mechanisms cannot

32

. . -. 
. . . . . . . . . . . . . . . . . . . . . . . . . .

4i , 4 4- - - - - - - - , .) 7-.,



be ignored. Multiphased mission scenarios involve the requirement to per-
form functionally distinct operations in accordance with some recurringsequence and/orh

sequence and/or frequency. Conversely, multimission systems may success-

fully perform a given mission despite a failed state in a logically parallel
mission mode. This latter example redefines the system and is not con-
sidered in this analysis.

Figure 3a depicts a single mission system in both operating and non-
operating modes. The ratio of time spent in each mode is a critical para-

meter of the overall system reliability analysis. For example, if the

system described were an emergency power backup system, its nonoperating
time would far exceed its operating time. Conversely, if it were a sur-
veillance radar, its nonoperating time would probably be limited to the
minimum required for periodic maintenance or refurbishment. L

I- 0  - I- I ,,u

I I

Nonoperating Mission Operational

Figure 3a. Single Mission System

Figure 3b depicts a multiphased system that is either nonoperating or

performing one of its required missions. Since all of the missions are

required tor overall system success, they must be logically serialized in -,

reliabilify calculations.

To 00 2 3T

Nonoperating Mission Operational Msi

Mission Mission Mission Mission
,.,. 12 3 n .'

1O X 2 X3

Figure 3b. Mutti-phased System

33

*1 .



.S

In both examples, it is necessary to determine individual mode reli-
abilities and prorate their contribution to system reliability in accordance
with the expected time to be allocated to each mode. Specifically:

i=n

:- : (mission time i) x (mission failure rate i)

i=O
System Fai lure Rate = (1)

(mission time i)

1=0

where:

i=O for nonoperating mode
i=1 for mission I

0

o
0

A i=n for mission n.

5.3.2 Mission Reliability

From the previous discussion, it is clear that determining overall
system reliability is critically dependent on a proper evaluation of mission
reliability for each intended mission of the system. In fact, reliability
requirements for many systems are specified in terms of specific mission
reliabilities. This is particularly evident in military systems that have
drastically different peacetime and wartime missions. Although the defini-

, tion of system reliability does not change with the mission type, it is
quite likely that the motivation for requiring reliability information
does. Reliability information is required for tactical and strategic plan-
ning, and mission success probability is the primary measurement criterion.
Reliability information is also required for logistics and maintenance
planning. However, availability becomes the primary goal. In any case,
mission reliability must be determined, whether it is to be a stand-alone
prediction or an intermediate calculation needed to determine overall
system reliability or operational readiness.

The need for a clear definition of specific mission functional require-
inentLs cannot be overemphasized. In the case of hardware reliability pre-
dictions, distinct missions could very likely have considerably different,
btress and environmental influences acting upon the components, thereby
drastically affecting their individual reliabilities. Furthermore, the
tuncktonal requirements of a particular mission might require the inclusion
of components or subsystems not required in another mission. Based on the
physical construction of the system, certain components might, therefore,
be in a nonoperating state while others are operational. The resulting
reliability block diagram could be considerably altered.

34

.. ,



• o .-. ____________,_____-_°___._,,

"%P'

Hardware duty cycling effects are generally considered in reliability
predictions at the highest levels only. Individual components within a

circuit are usually considered to be all operational or all dormant. Since
each component is essential to the continuity of the circuit, duty cycling
effects are considered negligible and consequently ignored.

Duty cycling effects, however, are probably the most critical deter-

minant of software reliability. Software cannot fail unless it is being
used. A logic path does not exist during a time period (albeit micro-
seconds) when it is not being used. The functional flow of control through

a computer program is, in fact, its reliability block diagram. This repre-
sents the first and most critical deviation from classical reliability

Atechniques, which is necessitated by the inclusion of software within a
system and software reliability calculations within a reliabilty analysis.

It follows that software reliability is a function of individual component
reliabilities and their path probabilities. The method for determining

each will be described later in this report.

Mission decomposition is performed as described by classical relia-

bility modeling techniques:
AQ.k,

I Define the subsystems required for mission success, and translate
S"-this into a mission success diagram.

2 For each subsystem, continue the decomposition process until a
level is reached where a reliability prediction can be made.

After subsystem reliability predictions (including software) have been
made, determination of mission reliability is the mathematical reverse of
the decomposition procedure. Figure 4 depicts a typical mission reliability
prediction analysis. It shows a missile system comprised of six major
components, two of which contain embedded software. Although the figure

only shows two levels of decomposition, it is obvious that the process can
be continued as far as necessary to arrive at a level where subsystem or
component reliability can be predicted.

Two things should be emphasized at this point. First, the presence of
software in the reliability block diagram does not alter the normal tech-
niques used for system decomposition, nor does it affect the mathematical

reconstruction of the system reliability prediction. Only a technique for
decomposing component parts and evaluating their individual and collective
reliabilities is needed.

The second point is a major one. As shown later, the software reli-
ability prediction methodology relies very heavily on the functional cycl-
ing of the individual software modules. It is, therefore, strongly mission
dependent. To combine software and hardware reliability calculations, it
is essential that the units of measurement be consistent. As shown later,
the software model will produce reliability calculations for a specific
mission and mission time. Unlike hardware considerations, which assume
that the components have arrived at a level of constant failure rate, the
software failure rate can be considered constant only for a prescribed
mission scenario. Separate analysis must be performed for each mission
considered in the analysis.

35/36

-. 4 %



Missile System

Airframe Auto Manual Guidance Control Propulsion
(A) Release Release (D) (E) (F)

(B3) (C)

Stage Stage Stage Switch Forward Aft

1 2 3 (Cl) Fins (4) Fins (4)

(At) (A2) (A3) (El) (E2)

CPU SW Sensor CPU SW Rocket Nozzle

(81) (B2) (D1) (02) (03) Motor (F2)
(Fl)

System Decomposition Reliability Block Diagram

Ai-A2--A3-- -01--92--93--E.E1..E1 1E-.E2--E2.-2--82--F1-F2

Missile Rellablity

-a.' R = Ra x ( Rb + Rc- RbRc) x Rd x Re X Rf

where: Ra = Ral x Ra2 x Ra3

Rb = Rbl x Rb2

Rc = Rcl

Rd = Rdl x Rd2 x Rd3

Re = Rel x Rel x Rel x Rel x Re2 x Re2 x Re2 x Re2

Rf = Rlx Rf2

Figure 4. Typical Mission ReliabilLty Prediction Approach

5.3.3 Hardware Reliability

Hardware reliability predict ion techniques a,.i w,.l I e.st ihi Sh.d ll',
g,-nerally well understo d and praCLiced. The vliCtronic r.-H i|ngs :ind i,'1 I-

ability ,-valuation m4!thods pre sent ed in Ml,-ll)BK-2171) ar,, wsn: ,,, t h ,

compleLely app) LicabJe Lo the hardwar,! portion ad il conb l "iii Iiirdw:" a.!

soiLware meLhodology. General ly, hardwar, componis ha'iv, -,,ii Z--11',o id

I Lo (de.-vice types, each of which has a ds-cri pLIve inudl Iil di oin1 1:11m t kil

Ot its rliabiliLy.

'I-.3

,,.-,.,. ...v :., ,. -, .,-----.,..'-....-.-- -. -,., ,- .,.,,,: - - -: :", : -: - ': '''}& .:: ''"'''' .,' - za

, a,. , '., ,. . >. ., . .% ' . ,: > *..Z - ., " , . . :w.,.. . . .-. ,-,v .2



Each specific component in a device category has a base failure rate

that represents its design characteristics. Multipliers, or pi factors are

applied to the base rate as specified in the device model to arrive at a

component failure rate adjusted by its developmental and operational char-

acteristics (Figure 5).

ELECTRONIC SUBSYSTEM

COMPONENT A (IC) A  , f(base rate, Pi factors)

-COMPONENT B (DIODE) O B . f(bass rate, Pi factors)

COMPONENT C (RESISTOR) a- C " f(bas rate, Pi factors)

L COMPONENT D (CAPACITOR) - D  f(base rate, Pi factors)

TOTAL FAILURE RATE A + B + C + D

Reliability -(Total Failure Rate) x (time)

Figure 5. Hardware Reliability

5.3.4 Software Reliability

The methodology developed for predicting software reliability is

'A." organized to maximize the procedural similarities to hardware techniques.
In hardware calculations, it is essential to identify the component parts,

determine their respective reliabilities using base failures rates and

system/application specific multipliers, and mathematically combine them in

accordance with the reliability block diagram. The software methodology

uses a parallel sequence of events: 1) the software subsystem is decomposed

into its components, 2) for each component, a reliability prediction is

calculated based on its inherent characteristics and developmental factors,

and 3) the component reliabilities are mathematically recombined into a

single prediction for the overall subsystem. Figure 6 summarizes the over-

all flow of the methodology. Using standard software engineering tools,

.,.. the following sequence of events is accomplished.

38

a.o. -%

IrN
i.

%
.%



i

Fucinl rcingCntx Flow- Decomposition Characteristics Analysis

Component A - Inherent Reliability Characteristics of A

C 8 I e C i

Component n Inherent Reliability Characteristics of n
0Expected Reliability of Component A

Compen naCharateristics o

Expected Reliability of Component n
FunctionalI . ExpetwedSbse Reliability opnn

Thread Analysis (Mission Cycle Based)

Mission Timing Software Subsystem Reliability
Analysis (Mission Time Based)

Figure 6. Software Reliability Prediction Methodology

I A functional decomposition is performed to identify those physical

components (programs, modules, routines, etc.) that comprise the
software subsystem.

2 Analysis of the processing characteristics of each component and an

analysis of the overall context (control and data information) flow

between components is performed to identity their inherent charac-

tertstics. Each component is classified in accordance with its

characteristics (e.g., real-time, single-function, extensive inter-

faces, etc.).

3 Characteristics of the intended development process are identified

and categorized by the nature of their contributions to the %
process. As discussed earlier, all methods and techniques are

39

,,¢: / .:,."..5...,.,:.' .,-.. ' 4-'.. . .. .... .. ... ,...-...,-.-.. .. ..... '.-. .... .... ..... .-. ---.--. .-. "TA



categorized as being either error avoidance mechanisms (e.g., use

of a high order language, use of structured techniques, etc.) or 'V
error detection mechanisms (e.g., frequent walkthroughs, quality
audits, etc.).

4 Individual software component reliabilities are computed.

5 A mission functional thread analysis is performed to determine the
duty cycling effects caused by the specific mission profile for
which reliability prediction is needed.

6 Overall software reliability for the specific mission is computed
using a Markov technique.

7 Overall system reliability for the specific mission is computed as .
the product of hardware and software reliabilities.

All of the above data can be made available during the early stages of
a software development. It is possible to perform all of the above analy-

". ses based on proposal or preliminary design information. Therefore, it is
also possible to predict software reliability at a time when it is still
possible to alter development plans to enhance it. The early application
of the methodology also provides a basis for comparing the cost effective-
ness of alternate approaches to increasing reliability. Of course, as the

O* project progresses, more detailed design information and more precise
timing estimates become available to the analyst. Periodic reapplication
of the methodology can be used to give assurance that reliability require-
ments will be met or to alert management to avoid potential shortfalls.
Actual measurements of component reliability can also be made during
development, and the system reliability can be estimated prior to software
integrat ion.

The remainder of this section discusses the specific implementation of
the methodology. This volume presents the rationale and derivation of the
model. Volume II includes detailed examples as well as the list of factors
derived from the surveys conducted.

Functional Decomposition

Decomposition of computer software is accomplished much like hardware.
Whereas, hardware subsystems can be segmented wherever a connection has
been or will be made, software can be broken anywhere in the sequence of
commands that it executes. In both cases, however, it is illogical to

J." disconnect components, except at the physical (or logical) boundaries of
'omplete subunits. System hardware might be decomposed into black boxes;
the boxes decomposed into printed circuit boards; the boards decomposed
into circuits; and finally, the circuits decomposed into their respective
electrical components. It is essential that every phase of the process
yields complete subunits. Computer programs are similarly decomposed.

40V
:.:.:--:, -. , .,, , . -., .. :... , . .. .... . ..... :; ... ..,.... ... .. ,-.;.., ,, : -, .. : , ,- . .. ' .-.. -.: .. , ..... , , :.. ., ....Z.. ...,.



As one of the largest consumers of computer software, the Department

of Defense has taken a leadership role in the development of software
standards and methods. Figure 7 illustrates the generally accepted termin-
olugy associated with software decomposition. It lists the terminology

COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI) - software aggregate which is

designated by the procuring agency for configuration control

L----COMPUTER SOFTWARE COMPONENT (CSC) - a functional or logically

distinct part of a computer software configuration item

L--UNIT - the lowest level logical entity specified in the

detailed design which completely describes a non-

divisible function in sufficient detail to allow

implementing code to be produced and tested independently
of other units

L-MODULE - the lowest physical entity specified in the

detailed design which may be assembled or compiled

a lone

L-INSTRUCTION - a single line of code which may

correspond to a single action of the computer

or may be automatically translated into a

series of single actions of the computer

I--OPERATION - the action Lo be performed by

the computer

--OPERANDS - the symbolic or absolute

addresses of the computer memory where the

data to be processed reside.

." Figure? 7. Software Decomposition Process and Terminology

411
a..,.,-°77:

-' " - . . '. ' '- - '. ' ' . . . - ". - -" - " " ". i " "- " " , , . ... " . - . - ' .' -' " " ' . - ." . -' ' '- - ' ' " : '- --' ' " '- ' " " '-L i "." - '



specified in the proposed military standard DoD-STD-SDS and has been

extended to the lowest possible level. At the highest level, software is
defined as a configuration item, one of which is defined by and for the
procuring agency. It has considerable contractual significance, but no
logical or functional charactetistics. At the other end of the spectrum,

the level of detail is so specific that prediction is not possible until

after implementation.

Although the software prediction methodology is not affected by the
level to which the software is decomposed, it is practical to define its
applicability as ranging from the CSC level through the module level.
Generally, CSC level decomposition is possible during the requirements
definition phase of software development; unit decomposition is possible

during preliminary design; and module decomposition is possible during the
detailed design phase. At each milestone, the software reliability predic-

tion methodology can be reapplied with greater accuracy. For generality,
the term "software component" is used to include all levels of softwar<
decomposition between the CSC and module level.

Inherent Reliability Characteristics

Just as hardware components can be classified into component categories

such as resistors, capacitors, and diodes, software can be categorized into
characteristic groups. In the case of software, however, the distinction

between groups is based on logical composition rather than physical makeup.
A direct relationship between the complexity of a computer program and its

reliability is intuitivey expected. Likewise, it is intuitive that the
complexity of the software is related to its intended application (the pro-
grammatic complexity of the design is considered later). In other words,
even before it is designed or implemented, real time software is expected
to be more error prone than batch software where timing is not a critical
consideration. Similarly, historical evidence shows that programs with a

large amount of interface requirements experience higher failure rates than
those that contain minimal interfaces.

To determine the inherent reliability characteristic of a given module,
the analyst must identify those operational characteristics that best
describe the module to be, developed. Error distribution estimates for the
more predominant operational characteristics of software modules have been
derived from the surveys described earlier. At present, they accurately
represent the combined opinions of software experts. Hopefully, the

rn&.' recently increased emphasis on software reliability and quality measurement
will promote and facilitate the collection of detailed statistical information
that is similar to that information for the hardware reliability engineer
in MIL-HDBK-217D. Currently, the methodology is more urgently needed than
the' data precision.

It should be noted that this phase of analysis addresses the inherent
error characteristics of the various components which must be combined with
the planned development process characteristics to determine module reli-
ability. The calculation of the module characteristic error distribution

42

.4

.'.g .." " ";-... ' ''; . "., ..' " .."v', ; '- .'-'. -, .' ." "., "- ' .,r.".". .'.. ."..""..."".. ........ ...... "-.. . ... ..-..-... .v. .". -.'



is simply an average of the effects of its inherent characteristics. If we
define C(j) as the percentage of errors of type j to be expected in the
module being evaluated, it follows that:

i=N

C(j) = N. (2)

where: c(j,i) is the percentage of errors of type j caused
by inherent characteristic i, (listed in Volume II)

-

and N is the number of inherent characteristics applicable.

Development Characteristics

As described earlier, software development characteristics can be

categorized in terms of their contributions to error avoidance or error
detection. Virtually any activity during the development life cycle can be
evaluated in terms of these two characteristics. The software reliability
prediction methodology uses measures of error avoidance and error detection

* effectiveness which are based on the planned technical and managerial
techniques and methods used to develop the software. As in the case of
inherent reliability characteristics, the data base used for these predic-
tions was constructed from the results of the survey performed during the
study.

It is generally accepted that certain development techniques are good
and will make the software better. For example, it is generally agreed IN"
that structured approaches are good and will have a positive influence on
the quality and reliability of the product. Quantification of the effects
is typically attempted after the development is complete, and the results
are rarely applicable to new projects. While the approach described herein
has a limitation due to the unavailability of detailed historical records,
the method is directly applicable to any software development venture.

Error avoidance effectiveness is calculated as the probability of not
introducing an error given the opportunity for making the error. Mathe-

* "jmatically, it is computed as unity minus the probability that a hypothetical
error will not be avoided by any of the techniques employed. lf we define

-' A(j) as the probability of avoiding errors of type j, it follows that:

i=N

A(j)= 1.00 - (.00 a(j,i)) (3)

where: a(j,i) is the probability of error type j being avoided by
the application ot technique 1, (listed in Volume II)

and N is the number ot techniques employed.

.4-. 43

%......... .... ................... ..... 4 - '.*-.



. . o . -

Error detection effectiveness is similarly calculated as the prob-
ability that an existing error will be discovered and corrected. Again, it
is mathematically computed as unity minus the probability that a hypotheti- .-

cal error will not be detected by any of the techniques employed. If we
define D(j) as the effectiveness of detecting errors of type j, it follows

that:

i=N

D(j) = 1.00 - (1.00 - d(j,i)) (4)

where: d(ji) is the probability of error type j being detected
by the application of technique i, (listed in Volume II)

and N is the number of techniques employed.

Expected Component Reliability

The expected reliability of a software component is a function ot the

inherent characteristics of the component and the characteristics of the

development process used to produce it. Unfortunately, there is insufficient
historical data available to isolate, with any degree of confidence, the
casual relationship between a specific characteristic or development tech-

nique and the resulting effect on component reliability. The term "reliabil-

ity" is used here to connotate the probability that the software component
will perform its intended functions correctly the next time it is executed.
That is, component reliability is defined as the probability of success in
a single trial. If it were possible to extensively exercise the component
in a controlled experiment, its reliability could be approximated by the
ratio of its successful executions to its total executions:

('uccess) Number of Successful Executions (5)

Rc Pr (success)= Number of Executions (5

Unfortunately, the component does not exist at the beginning of the develop-
. . ment effort, so it is not possible to determine the success probability as

' a simple relative frequency of measured events. The logical recourse is to

theoretically derive the probability function by computing the ratio of all
possible successful executions to the number of possible executions. It
should be noted that the number of pobsible executions is extremely large
since every variation of the inputs to the component and every variation of
the computer memory creates a new combination of circumstances in which the

component must operate.

We can redefine the probability of success in terms of the number of
variations as:

R = P (success) Number of Possible Successful Variations (6)
c r Total Number of Possible Variations

In the above expression, the number of variations is an extremely large
number representing all combinations of inputs, memory states and functional

requirements to be accomplished.

"'" 44



"V"- Although the component itself does not yet exit its func ional requir,-
ments do. Likewise, the process or mechanism exits to convrL those require-
ments into a software component. The software engineer is required to

create logic which will correctly perform every possible variation. Those

that he properly implements will successfully execute; those that he tails

to implement correctly will not. The ratio can be expressed as:

RbamsNumber of Variations Correctly Implemented
Rc Pr (ucs) Total Number of Variations Implumented(7

This is obviously a measure of the probability of successful imptementa-

Lion well as the probability of successful execution.

AT SOME LEVEL OF DECOMPOSITION, THE RELIABILITYI

OF THE PRODUCT IS EQUAL TO THE RELIABILITY OF

.HE PROCESS WHICH PRODUCED IT.

It follows that developmental techniques which increase the reliability
of the process will also increase the reliability of the product by reduc-
ing its error content. That is, component reliability can be predicted

,, based on an inherent probability of successful implementation enhanced by

the application of the error avoidance and detection techniques discussed
in the Development Characteristics section. Specifically, software com-
ponent reliability can be calculated as:

Rc = R i + E(I-R i ) (8)

where: Rc is the component reliability (probability of

success)

Ri is the inherent reliability of either the process or

the component

and E is the enhancement factor achieved by the application of
.error avoidance and detection techniques.

a. Inherent Component Reliability- R i

There are several approaches to determine inherent software component
reliability, each of which has both advantages and disadvantages. Any
measure which presents a ratio of successful implementations to total
implementations may be used. Some of the more obvious measures are discus-

sed below:

4YN
45 ,,

[,.:, :,, ." -.. .. , , ,.-- - - - -- ..- - - -... ,- ... ,-.... ... . . . .. . . . - . + . . . . . . .



I Assume that R i is equal to zero. This causes equation (8) to

reduce simply to the enhancement factor. At first glance, this

approach appears to be a gross simplification. It essentially

says that unless an effort is made to avoid and/or detect errors,
the software component will not work. We feel that this is the

-. most theoretically sound approach. However, it assumes that the

developer has absolutely no knowledge of the product he is respon-

- sible to develop. Even a casual knowledge of what he's supposed to

do can be considered an error avoidance technique. This assumption

carries with it the additional assumption that the checklist of

avoidance and detection techniques is exhaustive. It does, however,

define a lower bound on the reliability prediction when the devel-

opmental characteristics are known.

2 Assume that the inherent UNreliability is proportional to measured

fault densities of existing software which has similar characteris-

tics. This approach has the advantage of data availability. Al-

though there is a fairly wide range of measured values of faults
per line of code, there is sufficient historical data for an analyst

to make a sound engineering determination of the best figure to

use. Care must be taken, however, to distinguish how and when the
data used was collected. Many organizations do not begin counting

_ faults until the software is tested in the overall system while
others begin recording failure data as soon as individual components

have completed unit test. The prediction methodology assumes that

Ri includes consideration of all errors made, not just the ones

recorded subsequent to integration testing. This method should
produce an upper bound on the reliability prediction due to the

fact that the actual number of faults in a software product cannot

be less than the number recorded.

3 Assume that the inherent UNreliability is proportional to a fault

density which has been interpolated from the range of historically

recorded fault densities. The interpolation could be based on the

same characteristics already discussed in the Inherent Reliability

Characteristici. section. Although such a scheme has not yet been
formulated, it is the opinion of the author that one could be

created and that it would provide the most unbiased measure.

-, :.'

..

46

* . * . .*.- .

. . . .* . . . . . %...' .. . . .. . . .-- . - . .- .. .-.. %% *.4 .--.*I .% % *."



i. / -.... .. . . . . ...... .. . . .. . . .. ... .. ..... . . .. .. . r. .. . ... . ... .. . .. . . . . ..- - -. .

b ReliabiLity Enhancement Factor E

Figure 8 illustrates the relationship between inherent reliability,

avoidance effectiveness and detection effectiveness. The figure introduces

some terminology not previously described:

% .SW DiV(LOPMENT PROCESS$ ,w WIF:(A1 0n PRC(S
,  

J /

d0- ((I -.+p J
88 C

8Dr

A "

R C E (I-R where, A

! - D(I-A)

Figure 8. Relationship of R(1), R(C), A and D

Ri  Inherent reliability.

N Total possible variations implemented (reference equation (6)).

NG Total variations inherently implemented correctly. These are
the variations that would have been properly implemented
without process enhancement.

NB Total variations inherently implemented incorrectly. These
are candidates to be avoided or detected.

Ii  Number of variations being worked on during the i'th iteration.
These include the original errors to be eliminated plus
reworks of errors discovered on the previous iteration.

NGG Number of variations which "pass thru" the avoidance/detection
filters because they are already correctly implemented.

NBG i  Number of previously incorrect implementations which were
successfully avoided on the current iteration.

NBB i  Number of previously incorrect implementations which were
neither avoided nor detected on the current iteration.

NBD1  Number of previously incorrect implementations which were
successfully detected and returned for rework.

A,D Thebe are the error avoidance and dLtectton factors described

l in the Development Characteristics section.

47
e.

.-.- .. - ..-. . .,.-.- -. .. , .-.... .,... -... ..-.. ,,. .-.. ".. *- .. -. ,. ' -- , - --. -b- -.. ' i-'--. :



The process depicted represents a typical software development opera-
tion. As a result of the inherent characteristics of the software to be
developed, errors will be made. The development team will attempt to avoid
making those errors by the application of software engineering techniques.
Recognizing that they will probably not avoid all errors, tests and other
detection techniques are implemented to locate and rework the faults.

- Avoided errors will exit the process as corrected implemented variations.
%I Detected errors will be reworked by the process until they either are

avoided or escape the detection mechanisms. Eventually, all N variations
exit the process. Since the enhancement factor is an improvement factor,
it is defined as:

NBG_ _ Number of Corrected Bad Implementations

NBG + NBB Total Number of Bad Implementations

The derivation that follows, verifies that the enhancement factor is
independent of the initial number of bad implementations and is simply a
function of the process characteristics:

A
E = 1 ~-)(10) pI -D(I-A)

where: A and D are the error avoidance and detection factors

described in Section 5.3.4.

(I) Preliminary Calculations

The following relationships can be determined directly from Figure 8.
The number of initial inputs to the process is equal to the initial number

of errors expected due to inherent characteristics. On subsequent itera-
tions, the number of inputs is equal to the number of reworks necessitated
by the previous iteration:

10 = NB and Ii 
= NBDi_. (11)

V .The number of avoided errors on any iteration is equal to the number

of inputs processed multiplied by the probability of avoiding errors:

NBG i = li(A). (12)

The number of errors detected on any iteration is equal to the number
of errors NOT avoided multiplied by the probability of detecting them:

NBD i = Ii(I-A)(D). (13)-r
The number of errors not detected on any iteration is equal to the

number of errors NOT avoided multiplied by the probability of NOT detecting
them:

NBBi =i(I-A)(l-D). (14)

48

; j¢ ;,,, ; '.'.5' .\. 5.. \. / 5 '., ., 5 .
5 V , " " 5 .' ; ' . . ... . ' '5 " .' . X-" . " ".'-. -" ",

~*\ *** 5 *5~'5* .5 5 N



Combining equations (11) and (13) yields the feedback relationship
which causes the process to continue until all of the original inputs have

exited the process:

Ii = 1 0 [D(I-A)l i (15)

(2) Derivation

The components of equation (9) can now be expressed in terms of the
initial inputs to the process and the avoidance/detection mechanisms used
during the process.

The number of corrected ak.d uncorrected bad implementations which exit

-' the process are equal to the infinite sum of the number which exit on
individual iterations. That is:

NBG = NBG i and NBB NBB i . (16)

i=0 i=0

* gSubstitution of equations (13) and (14) into (15) yields:

NBG i(A) and NBB i(l-A)(l-D). (17)

di=O i=

* o.Since the multipliers are independent of i, they can be factored out

of the summations:

NBG = (A) Ii  and NBB = (I-A)(I-D) Ii . (18)

i =0 i =0

It follows that equation (9) becomes:

(A) Ii

E - Ii (19)

(A) I  + (I-A) (1-D) I

?.=< .-

49

N.
,,:'X-:.-



The summations cancel resulting in:

A (20)
A + (-A)(I-D)

or:

E I - D(I-A)

Path Analysis

After the reliability of each software component has been estimated,
it is possible to predict overall software subsystem reliability. This is 4o
accomplished by using the Markov process as suggested by Cheung [36]. The
approach is based on the fact that individual software components contri-
bute to the overall reliability when, and only when, they are execute.d. It
has already been shown that individual component reliabilities can be pre-
dicted. Fortunately, it is also possible to predict their operational 777
usage. As was mentioned earlier, preliminary design activities not only
identify the required software functional components, but also show their
relationships to each other. This may be expressed in the form of function-
aL flow diagrams, decision tables, hierarchical structure charts, or in the
case of interrupt driven systen, timing and frequency requirements for each
component.

The ftow of control between software program components can be con-
6tdered a Markov process if we assume that component reliabilities are
independent. If a given software program has n components, it is necessary
to know the reliability of each component and the probability of going from
one component to another. The component reliabilities are in the diagonal

matrix R, and the path probabilities are in the matrix P; i.e.,

P P

R 0 0 0 P I P2 P In

0 0 0 P2 1 P 2 2  P 2n

R 0 0 R 3  0 P= P P 32. . . P3n (22)

In P n2 nn2'.n

wh,.r: R is the reliability of component i, and Pij is the 1i)01baI It y

that control is passed trom component i to component j.

50

... ....... ..... .. K. . . . . . . . . . . . . . . . . .,...



The matrix Q is the product of matrices R and P. The ij'th entry rep-
resents the joint probability that component i will execute correctly (Ri)
AND pass control to component j (Pij).

1 IR*P i I *P12 RI*P 
-

I n

' R2*P R2*P R2*P
2 21 2 22 R2 2n

(23)

- Rn*P Rn*P R *PnII n n2 nn

By considering each component to be a state and by defining two
additional states, C for correct program termination and F for failed
termination of the program, a Markov chain can be constructed with n+2 %
states. The transition matrix T is formed by adding two rows and two
columns to the matrix Q. An additional two rows and columns are for the
states C and F. The matrix T is defined as follows:

1 2 . . . n C F

R*P R*P R*P 0 1-R1 11 1 12 1 I n1

2 R2*P R2*P R22n 20 -R

T' .,(24)RI-

n Rn *Pn Rn *P2n Rn nn R n11'.,-"

C 0 0 0 1 0

F 0 0 0 0 1

The ij'th entry of T is the probability of going from state i to state
j in one step. The ij'th entry of T*T is the probability of going from

*state i to state j in two steps. The ij'th etry of T*T*T is the probabil-

ity of going from i to j in three steps. The reliability of the software

is the probability of going from state I to state C in x steps or less, as

x approaches infinity. Thus, to compute this reliability, calculate

i=x

T as x approaches inttIiLy.

2.51ZI
m .. ", " ."i ." ." ." ." -'-z. *"- : ",', " ."--:'- ""-" ," " "", -" "o" "" " ",--'..:,"- ' "."'""- "" :" "."......... "'



There is a simpler way to compute the reliability of a program using

the matrix Q. Let ,M.

S =I + Q + Q+ Q +Q . . . (25) 9

where I is the identity matrix. Note that

-'2+ 3+ 4 2+ 3 ""
(l-Q) * (I + Q + Q + Q + Q + .) = I + Q + .+ Q"

2 3
_Q Q Q . . . (26)

and so,

I + Q + Q+ + Q4 
+ (I -Q) (27)

It follows that

S = (I - Q). (2)

Letting Sin be the entry in the first row and n'th column of S, the
reliability of the program for a single cycle, Rc, is given by

R = R .
SR n n (29)

Several important points should be made here. First, since the calculation
of software reliability was computed on operational path probabilities, the
prediction made is applicable only for the scenario or specific mission
described by these probabilities. In the likely event that the system
being analyzed has a variety of missions (e.g., peacetime, standby, war-
time, etc.), the reliability of each must be independently calculated by
adjusting the path probabilities matrix and reaccomplishing the Markov
analysis. A second point is equally significant, but tends to simplify the
overall prediction. The numerical value of the software reliability, is
independent of time. It was computed as the function of a specific mission

or operational scenario and can be assumed to be constant for that mission.
The final step in predicting a combined hardware/software system reliability
value is calculated by multiplying the hardware reliability value, deter-
mined by classical methods and the software reliability value, calculated
by the methods described herein.

5.4 Conclusions

The methodology described in this report was developed to allow the
independent calculation of subsystem reliabilities for hardware and soft-
ware components of an overall system and the combination of these calcula-
Lions into a single reliability prediction. For the hardware subsystem,
the classical methods of MIL-'HDBK-217D are used without modification. For

52

S- -. --Or

.',.. . . .

p.',." " " ,- . - .-.'.' "- "e : -. ",.' ,,.. " . ,,,....' ".' " ". .o. .-.. . .. . . . . . . . . . . . . . . . . . . . .".. . . . . .... . . . . . - *-. *t 't ,%, . .. N,,



the software subsystem, a new approach is developed, which combines soft-
ware knowledge with influences caused by the development methodologies
employed. Knowledge, or inherent reliability, is based on historical reli-
ability measurements of software developed for similar applications. The
influence or pi factors are determined by the manner in which the software
will be or is being developed.

This approach allows the system planners to predict system reliability
before development begins. This is accomplished by identifying the inher-
ent reliabilities of software components, combining them into a single
prediction of software reliability, and incorporating this prediction into
the system reliability model. Development methodologies can then be chosen
to increase overall reliability, and cost tradeoffs can be performed to
determine the most cost-effective means of achieving a required reliability.
In the event that desired system reliability cannot be achieved within
budgetary constraints, information obtained from the methodology will be
available to support a go or no-go decision at a time prior to extensive
investments in the development. X.

By using this methodology in combination with other reliability
measurement techniques, the original estimates of inherent component reli-
abilities can be refined as those components become testable. The method
can, therefore, be used at various stages of the development process to

periodically reevaluate the system reliability predictions and to measure
effectiveness of the development methods employed.

Wr

In addition to being recursive and reiterative, the method is designed
for expandability and flexibility. There are no constraints on the number
or type of pi factors that may be incorporated into a particular prediction.
As the state of the art of software development advances, it will be an
easy task to incorporate the effects of additional technical and managerial

approaches.

Many software development experts foresee a future environment of off-
the-shelf or standard component software products where a developer will
create a software subsystem by logically combining existing (high reliabil-
ity) software packages. If this environment is realized, the inherent com-

4. ponent reliabilities essential to the method presented here will be readily
available and highly accurate. Since these components of the software
subsystem will be developed, they will not be influenced by developing pi
factors and will be easily inserted into the calculations.

Many individual factors that are used by the reliability prediction
methodology will require refinement as the state of the art advances. The
method itself, however, is sound, practical, flexible, and will form the
basis for meaningful prediction, measurement, and estimation of operational

system reliability.

53

.......................................... ..
. . . . . . . .. . . . . . . . . . ... . . . .



if

b.0 DATA COLLECTION

b.l Overview and Objective

The objective of this phase of the effort was to collect and analyze

data from existing fielded systems and compare the results measured with

those that would have been predicted by the methodology.

..,- .
6.2 Approach

The approach taken was to initiate a broad spectrum data collection

effort at the beginning of the study; to determine what data was needed as

the methodology developed; and finally, to calculate from the data those

parameters that directly relate to the inputs and predictions produced by

the method.

Data collection involved both Martin Marietta sources as well as
external, public domain data bases. Within Orlando Aerospace, data were
collected from three major projects: two missile systems, and one command
and control application. Requests were sent to our sister divisions in
Baltimore and Denver for data on two more large-scale Defense projects.
Three major data bases were purchased from the Data and Analysis Center for

Software (DACS).

6.3 Results

With one exception, the data collection effort was very disappointing.
The data available was either incomplete or inconclusive. Originally, it

was thought that sufficient data could be gathered within our own organiza-
tion. In fact, the best source located was data gathered from our Assault
Breaker project. But even the Assault Breaker data is insufficient for
validating the methodology due to the lack of detailed operational data.

In Volume II of this report, the Assault Breaker program is explained in
detail, and the methodology is demonstrated on real data. Unfortunately,

Assault Breaker performance is too good. Although the methodology predicts
a very high reliability, the software has performed even better. At best,
the demonstration establishes credibility of the prediction technique.

Essentially, the data collected was unusable for one or more of the

reasons discussed in the following paragraphs.

6.3.1 Failure Rate

When the study was originally proposed, it was anticipated that a cri-

.------ ... r of the eth.dolugy would be some sorE of software failure
-' rate. So many models have been developed based on the removal of errors

over time, it was anticipated that our methodology would have a similar
dependency. Chronological failure histories of some of our internal pro-

jects might provide such information. For this reason, such data was
collected early in the study and the DACS Software Reliability Dataset,

compiled by John Musa, was purchased. As the methodology evolved, it
became clear that software reliability is more a function of the missions
that it performs than the amount of time it runs successfully between
failures. This is not meant to imply that such information is note. meaning ful." 

-

?Z 55
0 --.



Reliability measuremenL and estimation are essential to evaluation of

operational systems. The methodology developed as part of this study,
however, is oriented toward prediction at a Lime when no failure histories
are available. Data needed to adequately validate the methodology would .hl
consist of repetitious executions of a given mission scenario within a
variety of input domains. When a failure is recorded, the fault could not
be repaired. We are not aware that such an experiment has been accomplish-

ed.

'. 6.3.2 Latent Defects %.:6.32 Many individuals and organizations still do not accept tie notion of ]
software reliability. Because software does not exhibit the physical

characteristics of hardware devices, many professionals devoutly subscribe
to the deterministic view !jf software; it is either 100 percent or zero
percent reliable. In reality, this is a true assessment. However, it is
also reality that software failures occur statistically in a manner similar
to hardware failures. Despite the similarity, software faults are not
typically recorded as failures for reliability measurement purposes. They
are treated as latent detects, fixed, and forgotten.

b 3. 3 Fault Assessment

Most systems that have been operational long enough to have established
- reliability data available were fielded before software was recognized as a

s parabLe entity of the system. In many cases, software requirements are
specified as computer requirements, and faults uncovered during operation
are assessed against the computer, not against the software. Investigation
into specific problem descriptions associated with operational systems
revealed such problem descriptions as: "the computer went down" and "the
computer miscalculated the coordinates." The failures were either discounted
when the computer was reinitialized or were improperly charged against the
computer, just as though a resistor had failed. A proper evaluation is
possible only if the original problem reports are available. It is vir-
tually impossible to use data base information or summaries to determine
software performance separate from computer performance.

6.3.4 Enhancements

When hardware fails, something that had been working stops. When
software fails, the fault was present all along. When hardware fails, it
is fixed by returning it to its previous working state. When software
fails, it is returned to a better state. By this rationale, many software
changes are not recorded as fault corrections, but rather as enhancements.
Ngain. detailed analysis of individual change notices reveals which changes

- were, in fact, enhancements and which ones were not. However, review of

" large scale data bases is inconclusive.

6.3.5 Developer versus User

When a company such as Martin Marietta develops and delivers a defense
system, their data collection terminates. Although extensive records are
maintained prior to delivery, very Little data is returned atter delivery.
Data bases available from developers, therefore, terminate at the point

N., 56

:€. %



where the system became operational. Even though data concerning the in-
herent factors of the software are available and the error avoidance and
detection mechanisms used during development are known, the resulting per-
formance data are not. Conversely, those who are charged with maintaining
a fielded system have performance data, but they do not have the develop-
mental information needed to validate a prediction methodology. A partic-
ularly frustrating experience is to have an abundance of operational data
and an abundance of developmental data for different systems.

6.3.6 Military versus Commercial

The most extensive software performance data bases available were
compiled for commercial systems. Literally, thousands of software failures
have been recorded against millions of hours of operation. Reliability of
a military system must be measured against its operational mission. As
defined earlier, system software reliability is the probability of perform-
ing an intended mission without causing system outage or failure. To
record a software failure would, therefore, require a system outage or
failure. For the type of software developed for weapon systems, an outage
and a failure are the same. A missile cannot be reinitialized while in
flight. Whereas, most commercial applications can continue to be used with
an acceptable failure rate, most military systems require a very high prob-
ability of working correctly every time. Defense systems data bases,
therefore, tend to contain extensive data on mission scenarios rather than
to meet their primary purpose (e.g., data on training exercises rather than
on actual flights).

6.4 Conclusions and Recommendations

Although the data collected during this study were inconclusive as a
method validation tool, analysis indicated some significant shortcomings
about the way we handle software data throughout its life cycle. The
recommendations in the following paragraphs are offered.

6.4.1 Record All Software Problems

We must instill in data collectors and recorders the importance of

properly identifying problem sources. In most cases, the personnel charged
with operating a system are not qualified to make a determination of the
cause ot a problem. When a system defect is recorded, it must uveutually
be charged against some aspect of the system. When a hardware failure can- k
not be replicated, the tailure is recorded as being unverified or transient.

[his is a logical and well-accepted practice. However, when software
fails, a fault exists. When the system is reinitialized or rerun, wu are,
in most cabes, changing the environment (or input domain) in which the
software was operating when it failed. Sooner or later, the problem will
reoccur. If it is to be corrected, it is essential that the state of the
system during the problem be recorded as accurately as possible. If the
system's state can be re-established, the fault will remanite'st itself. 7-.
All software errors and suspected software errors must be documented, even
if a simple restart makes it seem to disappear. ". 1

57

%

% % %

%V-



6.4.2 Identify the Source

When a software fault is isolated, it is very important for analysis

to reveal the exact cause of the problem. There is no such thing as an
enhancement resulting from a system failure. Software is not just the code

that's embedded in the computer. Software is also the design logic that
resulted in the code, and it is the requirement that resulted in the design.

. =*' It It is decided to enhance the software to extend its capabilities, then

the original capabilities were not properly stated and the software, had a

requirements deficiency. Virtually everyone in the software industry
acknowledges the fact that incomplete, ambiguous, and constantly changing
requirements are the heaviest contributors to software costs and perform-
mance problems. However, we deny ourselves the data needed to correct, or
at least minimize, the impact by labeling requirement and design changes as
enhancement s.

6.4.3 Distinguish Hardware From Software

The physical portion of a computer is a hardware component of a system.
The logical operation of that computer is a software component of the
system. In most cases, operations personnel cannot distinguish between a
computer hardware failure and a computer software failure. The symptoms in

*- many cases are the same. Recent emphasis on automatic fault isolation and
*) J built-in-test is encouraging. As mentioned earlier, it is essential that

software faults be identified as such.

6.4.4 Consistent Data Collection

Procuring agencies interface with both the developer of a system and
the eventual user of the system. They alone can establish and influence a
meaningful data collection effort on both sides of the delivery milestone.
The developer must be encouraged or paid to record significant facts con-

cerning the development process. Software problem reports generated during
development are typically devised and used by the developer. Since the
procuring agency is not generally concerned with resolved problems, these
reports are not usually identified as deliverable data items. Likewise,
the techniques used by the contractor during development are usually not
documented in a uniform or consistent fashion. They are hardly ever docu-
mented in a deliverable data item. When the system is fielded, the oper-

ational user begins collecting performance data without the benefit of
knowing how the software was developed. When he does identify a problem,
he may be able to fix it. However, he cannot determine why it happened or
what could have been done to avoid it.

The Software Technology for Adaptable, Reliable Systems (STARS) pro-
!' gram has recently generated a series of Data Item Descriptions that provide

a uniform and consistent format for recording software facts during and
subsequent to development. Although, usage of the forms devised will
increase the cost of projects using them, the data that will be collected
should prove invaluable to the development and evaluation of new software

% methods and techniques.

58

S- %



7.0 CONCLUSIONS AND RECOMMENDATIONS

The methodology derived during this effort should be applicable to
virtually any operational system which employs critical, embedded computers
and software. The method is both mathematically sound and computationally
feasible at any level of detail required. Like all reliability models, the
accuracy of the predictions computed is highly dependent on the parameters
used during the calculations. The factors used in hardware reliability
predictions have been derived and measured over an extensive period of
time. Until recently, very little quantitative information about software
factors has been available. The true value of the methodology will not be
totally realized until more precise measurement of software factors and
characteristics is possible.

With the increased dependency of military systems on embedded software,
the industry is becoming increasingly more interested in understanding,
measuring and controlling the software development process and product.
The trend toward high-level languages, particularly Ada, the trend toward
standard computer architectures, and the enforcement of software design and
development standards will facilitate the derivation and use of additional
measures of software factors which can be used directly by the methodology.

The SAIC study [103] mentioned earlier will be concluded soon. The
measures defined therein appear to be both meaningful and compatible with
the methodology developed during this effort. An effort is needed to
directly validate the feasibility, accuracy and cost effectiveness of both
the SAIC measures and the Martin Marietta methodology. It is strongly

recommended that consideration be given to the definition of a follow-on
effort to validate the study results on an actual military system develop-

ment contract. The effort should be accomplished concurrently with the
system being developed. Data concerning the development process itself
should be captured and used in the prediction methodology. The SAIC

" ". measurements should be accomplished at various stages during the system
development and detected faults should be recorded and analyzed when they
happen, not after it is too late to determine their root causes. Such an
effort would produce a wealth of data not currently available and would
form an intelligence base usable by Air Force planners and civilian con-
tractors to determine the most cost effective means of developing high
reliability systems.

The method developed during this effort, much like the corresponding
hardware methodology described in MIL-HDBK-217D, is applied by defining the
individual parts (modules) which make up the system and by defining the
interactions between them. Although the method can be applied manually, it
lends itselIf quite well to computerization. Furthermore, one of its in-
tended uses is as a tool for performing tradeoff analyses of various design
a approaches and techniques. It is suggested that consideration be given to
the construction of a user-friendly, conversational and flexible computer
program which would lead a reliability engineer through the method. Such a
program could be designed around the current method using current parameters
and tactors. It could be designed for expansion and/or modification as the
techniques and metrics evolve. Furthermore, it could be extremely valuable
as a toot to begin the accumulation and refinement of statistical data
bases needed for accurate software reliability measurement and prediction.

59

U%
" ..",-"



The Ada programming language will very shortly be the source language
for all DoD-embedded, mission-critical software. It would be most appropri-

ate to initiate data collection concerning the effects of Ada on software
and system reliability. A study of the language itself and an expansion of
the combined system reliability prediction methodology to accommodate it
would be a valuable asset to Air Force System planners and project officers
as they begin and carry out the transition to Ada.

C-.4 - q

60

SI%



APPENDIX A

GLOSSARY

'A-1



ACCEPTANCE CRITERIA -- The criteria a software pLoduct must meet to success-.
fully complete a test phase or meet deliveLy requirements.

ACCEPTANCE TESTING -- Formal testing conducted to determine whether a system
satisfies its acceptance criteria and to enable the customer to determine
whether to accept the system. See also QUALIFICATION TESTING.

AUTOMATED DESIGN TOOL -- A software tool which aids in the synthesis, ana-
lysis, modeling or documentation of a software design. Examples include
simulators, analytic aids, design representation processors and documen-: ",,. tation generators . -

-. " AVAILABILITY - The probability that computer software is capable of fw-ic-

tioning in accordance with requirements at any time. This probability is
often measured with respect to total need time.

BATCH PROCESSING -- A technique by which items are coded and collected into
groups for processing.

CDR -- See CRITICAL DESIGN REVIEW.

CERTIFICATION - The process of confirming that a system is operationally
effective and capable of satisfying mission requirements under realistic
operating conditions.

CHANGE REQUEST -- See SOFTWARE CHANGE REQUEST.

CLARITY -- The ability of the computer program to be easily understood. It
is a measure not only of the computer program itself, but also of its sup-
porting documentation.

COMPATIBLE HARDWARE/SOFTWARE PREDICTION MODEL -- Suitable interpretation of
hardware and software mathematical relationships for combined computations
so as to make feasible prediction of the System Reliability.

COMPLEXITY -- The degree of complication of a system or system component,
determined by such factors as the number and intricacy of lincerfaces, the
number and intricacy of conditional branches, the degree of nesting, the
types of data structures, and other system characteristics.

CONFIGURATION CONTROL - The systematic evaluation, coordination, approval or
disapproval, and implementation of all approved changes in the configuration
of a configuration item after formal establishment of its approved technical
documentation.

CONFIGURATION CONTROL BOARD -- The authority responsible for evaluating and
approving or disapproving proposed engineering changes, and ensuring imple-
mentation of the approved changes.

A.A

2-:'' i - '2F ' :2'i: :- iF i:i:- :-i.i 'i~ " ."%.- ,%.2-F 'ii: i.2-1i~i:il~ li: - i:i:il - -i. i, i- 212, ? - ""'i2 Z 2



4..

CONFIGURATION ITEM -- An aggregation of hardware/computer software, or any of

its discrete portions, that satisfy an end-use function and are designated

by the Government for configuration management.

CONFIGURATION MANAGEMENT -- A discipline applying technical and administrative

direction and surveillance to identify and document the functional and
physical characteristics of a configuration item, control changes to those

characteristics, record and report change processing and implementation
status, and verify compliance with specification and other related contract
requirements.

CONTROL VARIABLES -- Dynamic program data which affects or controls processes

within other modules or subprograms. .j

CORRECTNESS -- The ability of the computer program to perform exactly and
correctly all of the functions required by the specifications.

COUPLING - See DATA COUPLING and LOGICAL COUPLING

CRITICAL DESIGN REVIEW (CDR) -- A formal technical design review conducted to
*) ensure that the detailed design satisfies the requirements correctly and

completely. It is conducted after completion of the detailed design but
prior to coding. It establishes the design baseline.

DATA COUPLING -- An inter-relationship between or among program modules in
which data items are shared without formal parameter passing.

DECISION TABLE -- A table of all conditions that are to be considered in the
description of a problem, together with the actions to be taken. The two
are linked by "decision rules" which tie each combination of conditions
with a corresponding combination of actions.

DESIGN FACTORS -- Factors which can be characterized as reliability design
tools or methodologies (e.g., top-down design, modularity, structured
programming, etc.).

DETAILED DESIGN SPECIFICATION - This document provides complete programming .'
design sufficiently detailed for a programmer to code from with minimal
additional direction.

DEVELOPMENT FACTORS -- Factors which can be characterized as being part of the
software reliability engineering development process (e.g., test-debug-fix,
use of developmental aids or standards, quality assurance measures, etc.).

DUTY CYCLE - A measure of the need time of a computer program or portion of
the program with respect to total system time.

ECONOMY -- See EFFICIENCY.

A- 3

%



*.-. EFFICIENCY -- A measure of the use of high-performance algorithms and conser-
vation of use of resources to minimize the cost of computer operation.
Sometimes referred to as ECONOMY.

EMBEDDED SOFTWARE -- An interactive assembly of computer programs and computer
. data that is integral to a major system whose primary function is not data

processing.

ENGINEERING CHANGE NOTICE - A document used to process changes to baseline
documents and which includes both notice of an engineering change to a
configuration item and the supporting documentation by which the change is

* described.

FAILURE - See SOFIWARE FAILURE.

FAULT - A software defect that causes program operation to fail to perform
program requirements.

FAULT AVOIDANCE - The act of eliminating the mechanisms which cause erroneous
software to be created and/or the application of mechanisms which encourage

-A or support correct software creation. It relates to the elimination of
-errors before they occur.

FAULT CORRECTION - The act of removing, avoiding or otherwise negating the
effects of a detected fault. Can be accomplished automatically by the
software or by alteration of the software.

FAULT DETECTION - The recognition of the presence of a software defect
either by its external manifestations or by an inspection of the software
itself. Implied in the definition is the ability to locate and/or isolate
the defect itself.

FAULT TOLERANCE -- The ability of the computer program to perform correctly
despite the presence of error conditions.

FCA -- See FUNCTIONAL CONFIGURATON AUDIT.

FLEXIBILITY - A measure of the extent to which the computer program's design
allows it to perform or to be easily modified to perform functions beyond
the scope of its original requirements.

FLOW CHART - A symbolic representation of the functional flow and an abbre-
viated description of the inputs, processing, outputs and flow of control

of a computer program or portion of the program.

FORMAL QUALIFICATION TESTING (FQT) - Testing conducted prior to Functional
Configuration Audit to demonstrate CPCI compliance with all applicable
software specifications.

FQT -- See FORMAL QUALIFICATION TESTING

A- 4

.1/%



FUNCTIONAL CONFIGURATION AUDIT (FCA) -- Audit to verify that the actual per-
formance of the configuration items complies with the B-5 development
specifications.

FUNCTIONAL DECOMPOSITION -- A method of designing a system by breaking it down
into its components in such a way that the components correspond directly
to system functions and subfunctions.

FUNCTIONAL DESIGN SPECIFICATION - This document establishes the functional
design of the software at the computer program level; provides sufficient
design information to accomplish the goals of the Preliminary Design Review.

GENERALITY - The ability of the computer program to perform its intended
functions over a wide range of usage modes and inputs, even when not di-
rectly specified as a requirement.

HARIWARE RELIABILITY - The probability that the required hardware in a system
will operate failure free in a specified environment for the prescribed
missions and time periods.

HIERARCHICAL CONTROL - A sequence of control which consists of multiple
levels of decomposition, general to specific.

HIERARCHICAL DESIGN -- A design which consists of multiple levels of decom- "4
position, general to specific.

HIERARCHICAL INPUT-PROCESSING-OUTPUT (HIPO) CHARTS - A document which con-
sists of diagrams illustrating the functional flow of inputs, processing
and outputs on multiple levels of decomposition, general to specific.

HIGH ORDER LANGUAGE - A programming language which provides compression of
computer instructions such that one program statement represents many
machine language instructions. It is nonproblem specific and is used by
prograners to communicate with the computer.

HIPO CHARTS - See HIERARCHICAL INPUT-PROCESSING-WrPUT CHARTS

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) - Verification and Validation
of a software product is performed by an organization that is both tech-
nically and managerially separate from the organization responsible for
developing the product. 6N

INTERFACE DESIGN SPECIFICATION - This is an optional document which is re-
quired whenever the system contains two or more cQmputers that must com-
municate with each other. It provides a detailed logical description of
all data units, messages, control signals and communication conventions
between the digital processors.

. INTEROPERABILITY - A measure of the ease by which a computer program can be
made to interface with other computer programs.

A- 5

* -. *.' ; ;. *l .. .. *. * *. %



INTRINSIC FACTORS -- Factors which can be termed as inherent characteristics

or attributes of the software (e.g., language, complexity, size, etc.).

IV&V -- See INDEPENDENT VERIFICATION AND VALIDATION.

LOGICAL COUPLING -- This is the relationship which exits between program mod- ]
ules due to the passage of control variables from one module to the other.
Whereas data variables provide parameters to and from a module, control
variables affect the logical operation of the module itself. See also
DATA COUPLING.

MAINTAINABILITY -- A characteristic of design and installation which is ex- 7
pressed as the probability that an item will be retained in or restored to
a specified condition within a given period of time, when maintenance is 6"

performed in accordance with prescribed procedures and resources; i.e., a
measure of the extent to which the computer program can be easily altered
or expanded to satisfy new requirements or to correct deficiencies.

MODIFIABILITY - The characteristics of being easy to modify; one aspect of
maintainability. This implies controlled change in which some parts or as-
pects remain the same while others are altered in such a way that a desired
new result is obtained. This measurement includes consideration of the
extent to which likely candidates for change are isolated from the rest of
the computer program.

MODULAR CONSTRUCTION -- An organization of the functions of the computer pro-

gram into a set of discrete program modules.

MODULAR DECOMPOSITION -- See FUNCTIONAL DECOMPOSITION.

MODULARITY -- The extent to which the computer program is segmented into
single-purpose, single-entry, single-exit modules.

MODULE - A discrete identifiable set of computer instructions usually handled
as a unit by assembler, compiler, linkage editor, loading routine, or other
type of routine or subroutine. It is frequently defined as the lowest stand
alone, testable set of instructions.

MODULE COUPLING -- See DATA COUPLING and LOGICAL COUPLING

OPERATING SYSTEM - Software that controls the execution of programs. An op-
erating system may provide services such as resources allocation scheduling,
input/output control, and data management. Although operating systems are
predominantly software, partial or complete hardware implementations are
possible. An operating system provides support in a single spot rather
than forcing each program to be concerned with controlling hardware. See
also SYSTEM SOF 4IWARE. "

OPERATIONAL FACTORS -- Factors which can be derived and characterized from
system requirement and specification documents (e.g., operational/mission

* scenarios, inputs-outputs functions, performance criteria, etc.).

A -6

[" .. " "U .. . . .



ii ~~~~~~~~~~~~~~~~~.......... ................. .............. .... - i...... F. ,.... ...... . ..... - -. !

PCA See PRELIMINARY CONFIGURATION AUDIT.

PDL -- See PROGRAM DESIGN LANGUAGE.

PDR -- See PRELIMINARY DESIGN REVIEW.

PHYSICAL CONFIGURATION AUDIT (PCA) -- A formal examination of the as-built
version of a configuration item against its technical documentation to en-
sure the adequacy, completeness, and accuracy of the technical design
documentation.

PQT -- See PRELIMINARY QUALIFICATION TESTING.

PORTABILITY -- The characteristic of computer software which allows it to be
used in a computer environment different from the one for which it was
originally designed.

PRELIMINARY DESIGN REVIEW (PDR) -- A formal technical review of the basic
design approach. It is held after the completion of preliminary design
efforts but prior to the start of detailed design. See also SYSTEM DESIGN
REVIEW and CRITICAL DESIGN REVIEW.

PRELIMINARY QUALIFICATION TESTING (PQT) -- An incremental process which pro-
vides visibility and control of the computer program development during the 2

time period between the Critical Design Review (CDR) and Formal Qualifi-
cation Testing (FQT); conducted for those functions critical to the CPCI.

PROGRAM -- All the software that can physically interrelate as an entity. It

is also the name given to the highest level function in a hierarchical
design.

PROGRAM DESIGN LANGUAGE (PDL) -- A language with special constructs and,

sometimes, verification proLocols used to develop, analyze, and document
a design.

PROGRAM SPECIFICATION LANGUAGE (PSL) -- A language used to specify the design,
requirements, behavior, or other characteristics of a system or system com-
ponent.

PROGRAM SIZE -- A measurement of size usually expressed as the number of lines
of code, the number of computer instructions or the number of bytes of code.

PROGRAM SUPPORT ENVIRONMENT -- An integrated collection of tools accessed via
a single command language to provide programming support capabilities
throughout the software life cycle. The environment typically contains
tools for designing, editing, compiling, loading, testing, configuration
management and project management.

PSEUDO CODE - A combination of programming language and natural language used
for computer program design. ,. -

A- 7

ON". .4-.,l

1--4- %"- -"-.:, .. "-....'.. ''.-''% .'''' -we.-.,:.'?.'''''' 2!:-- N / ;,"-.% -5 " ' '- '', , ,': ...-"'' .- ...." , ,



PSL -- See PROGRAM SPECIFICATION LANGUAGE.

QUALIFICATION TESTING -- Formal testing, usually conducted by the developer
for the customer, to demonstrate that the software meets its specified re-
quirements. See also ACCEPTANCE TESTING, PRELIMINARY QUALIFICATION TESTING,
AND FORMAL QUALIFICATION TESTING.

QUALITY ASSURANCE -- A planned and systematic pattern of all actions necessary
to provide adequate confidence that the item or product conforms to estab-
lished technical requirements.

READABILITY - A measure of how well a skilled programmer who was not the
original creator of the computer program can understand the program and
correlate it to the original and to new requirements.

REAL-TIME PROCESSING - The processing of information or data in a manner

sufficiently rapid that the results of the processing are available in time

to influence the process being monitored or controlled.

REPAIRABILITY - The extent to which a change to correct a deficiency can be
localized, so as to have minimal influence on other program modules, logic

paths or documentation.

REQUIREMENTS SPECIFICATION -- A specification that sets forth the requirements
for a system or a system component; for example, a software configuration
item. Typically included are functional requirements, performance require-
ments, interface requirements, design requirements and development stan-

dards.

REQUIREMENTS TRACEABILITY MATRIX -- A set of tables that provides traceability

of software requirements from the system specification to the individual
item requirements specifications, to the design specification which imple-
ments the requirements, and to the software plans and procedures that verify
that requirements have been fully implemented.

RESILIENCE - A measure of the computer program's ability to perform in a

reasonable manner despite violations of the assumed usage and input conven-
tions. Also referred to as ROBUSTNESS,

REUSABILITY - A measure of the extent to which the computer program can be
used in an application different from the one for which it was developed.

REVIEWS - See specific entries, e.g., SDR, PDR, CDR.

ROBUSTNESS -- See RESILIENCE.

SDR -- See SYSTEM DESIGN REVIEW.

SELF-TEST CAPABILITY - The extent to which the computer program can be easily
and thoroughly tested by internal procedures.

A- 8



SOFIWARE CHANGE REQUEST - A document used to describe and process proposed
changes to baseline software and its associated documentation.

SOFIWARE CONFIGURATION MANAGEMENT PLAN -- This document describes the con-
tractor's organization for configuration management, the procedures that
will be used to implement tailored contractural requirements, and the per- %
sons/groups responsible for each particular phase of configuration manage-
ment.

SOFTWARE CORRECTIVE MODIFICATION -- The periodic updating of the software to
preclude system failure when processing potential data sets.

SOFTWARE DESIGN SPECIFICATION - This document describes the assignment of
each of the software requirements to a specific functional software module,
the functional interface for each module, the data base utilized by each
module, and the design implementation which has been built into the oper-
ational software. C.

SOFIWARE DEVELOPMENT LIBRARY - The libraries, library procedures and auto-
mated aids used to maintain control of the software baseline by providing
a consistent, systematic and orderly method for organizing, maintaining and
controlling a project's computer program elements and documentation during
the development phase.

SOFTWARE DEVELOPMENT PLAN - This document presents the comprehensive plan for
the project's software development activities by describing the software
development organization, the software design and testing approach, the
programs and documentation that will be produced, software milestones and
schedules, and the allocation of development resources.

SOFTWARE FAILURE -- The inability to perform an intended logical operation in
the presence of the specified data/environment due to a fault in the soft-
ware.

SOF7WARE MAINTAINABILITY MODEL - A mathematical model that may be derived
from prior experience in correcting software faults that predicts frequency
of faults of various categories, and may include suitable parameters to
accomodate results of timeline analysis of software corrective and preven-
tative maintenance, determination of mean-time-to-restore (MTIR) as well
as maximum restore time for the required percentile of the timeline data,
and determination of optimum performance of software corrective and preven-
tative modification tasks, including frequency and duration.

SOFTWARE PROBLEM REPORT - A report of a program defficiency identified
during software qualification, test, system integration and test, or sys-
tem operation, which appears to be software related.

SOFTWARE QUALITY ASSURANCE PLAN - This document is produced during the soft-
ware planning phase and describes the procedures that will be used to im-
plement Software Quality Assurance control, and the persons/groups respon-
sible for each phase of Software Quality Assurance.

A- 9

I%

4 ~. . .- .--. ------------------------------------------------------------------------------ S. *.* .



SOFTWARE RELIABILITY - The probability that the required software of a sys-
tem will perform its intended functions for the prescribed missions and
time periods in the specified operating environment without causing system
outage or failure.

SOFTWARE RELIABILITY PREDICTION MODEL -- A mathematical model that could in-
clude appropriate parameters such as code complexity, branching numerics,
structured/modular format utilization, evecution rate, timing restrictions,
and data complexity, predictability and variability, as may be verified by

test data.

SOFIWARE REQUIREMENTS REVIEW (SRR) - A review to achieve formal agreement
between the customer and the developer that the software requirements spec-
ifications are complete and accurate.

SOFIWE REQUIREMENTS SPECIFICATION - This document establishes the require-
ments for the performance, design, test and qualification of the computerprogram. See also REQUIREMENTS SPECIFICATION.

4' SOFTWARE SUPPORT LIBRARY -- A software library containing computer readable
0 and human readable information relevant to a software development effort.

SOURCE LISTING -- A document that displays tabulated data identifying the
sequential appearance of instructions as they appear on the computer pro-
gram media.

SRR - See SOFTWARE REQUIREMENTS REVIEW.

SPECIFICATION CHANGE NOTICE -- A formal notification of a change in the spec-
ification.

STEPWISE REFINEMENT - The process whereby steps are taken in the following
order: (1) the total concept is formulated , (2) the functional specifica-

.. tion is designed, (3) the functional specification is refined at each inter-
mediate step where intermediate steps include code or processes required by
the previous step, and (4) final refinements are made to completely define
the problem.

STRUCTURE CHART - A design and documentation technique used in structured
progra ning to show the purpose and relationships of the various modules
in a proqram.

STRUCTURED APPROACH -- An approach to software design which consists of using
stepwise refinement to formulate and define a problem. See also STRUCTURED
DESIGN.

STRUCTURED CODE -- Code that has been generated with a limited number of well-
defined control structures using stepwise refinement. See also STRUCTURED
PROGRAMMING.

A - 10

................... ... ............... '...l° " ii- 1....I%

* .J~rc~-..r. Z7



STRUCTURED DESIGN -- A disciplined approach to software design which adheres
to a specified set of rules based on principles such as top-down design,
stepwise refinement and data flow analysis.

STRUCTURED PROGRAMMING -- A computer program constructed of a basic set of
control structures, each one having one entry point and one exit. The set

of control structures typically include: sequence of two or more instruc-
tions, conditional selection of one of two or more instructions or sequence

of instructions, and repetition of an instruction or a sequence of instruc-
tions.

-p SUBPROGRAM -- A computer program that can be part of another program.

SYSTEM AVAILABLILITY -- The probability or proportion of operational time

that the hardware and software is in the required operable and commitable
state at a time when the mission is required with a specified data environ-
ment.

SYSTEM CAPABILITY -- The probability that the hardware and software can a-

chieve the required mission objectives given the operational conditions,
including data environment, during the mission.

SYSTEM DEPENDABILITY -- The probability that the hardware and software will
perform successfully during one or more required sequences of a mission,

.. •given the hardware and software status at the start of the mission (avail-
-'- ability).

SYSTEM DESIGN REVIEW (SDR) - A formal review conducted to evaluate the op-
timization, traceability, correlation, completeness and risk of the allo-
cation of system requirements among systent components including software.

SYSTEM EFFECTIVENESS -- The measure of the degree to which the hardware and

software achieve the mission requirements in the operational environment
as evidenced in system availability, dependability and capability.

SYSTEM EFFECTIVENESS MODEL -- A mathematical model encompassing both hardware

and software for a prior prediction, a pre-operational test evaluation or
an operational demonstration of the deliverable system effectiveness. The

model should encompass the foregoing defined parameters and include a prac-
tical means of computation and analysis. Implementation of the model is
generally demonstrated with data from other programs or data assumed from
requirements, prior to application in the current program.

SYSTEM INTEGRATION TESTING - The process of testing an integrated hardware

and software system to verify that the system meets its specified require-
rments.

SYSTEM REQUIREMENTS SPECIFICATION -- This document states the technical and
mission requirements for a system as an entity, allocates requirements to
functional areas, and defines the interfaces between or among the functional
areas.

A--.



TEST ORGANIZATION -- A group responsible for preparing test plans and proce-

dures, executing the test procedures, and analyzing the test results in
order to verify that the system performed its intended functions. This group
is also responsible for documenting problems detected during testing and
verifying by retest that corrections to the software work properly.

TEST PLANS AND PROCEDURES -- Documents which set forth how the system or con-
figuration item will be qualified, describing on the system level how it

will be demonstrated that each performance requirement stated in the System

.. Functional Requirements Specification has been met. Similarly at the con-
figuration item level, these documents describe the method of qualifying a
configuration item against functional requirements stated in its Software

* -Functional Requirements Specification.

TEST READINESS REVIEW (TRR) -- A review conducted prior to each test to ensure
adequacy of the documentation and to establish a configuration baseline.

TESTABILITY -- The extent to which a software product assists in the estab-
lishment of verification criteria and supports evaluation of its perfor-
mance.

TOP-DOWN APPROACH -- An approach which identifies major functions to be ac-
complished, then proceeds from there to an identification of the lesser
functions that derive from the major ones. 6

' TOP-DOWN DESIGN -- An ordering to the sequence of decisions which are made in
the decomposition of a software system by beginning with a simple descrip-

* . tion of the entire process (top level). Through a succession of refinements
of what has been defined at each level, lower levels are specified.

TRR -- See TEST READINESS REVIEW

UNIT DEVELOPMENT FOLDER - This is a software development notebook that is
used to collect and organize software requirements and products for a unit
of software as they are produced. It contains all requirements documen-
tation, flow charts, discrepancy reports and test results.

UNIT LEVEL TESTING - Testing to verify program unit logic, computational
adequacy, data handling capability, interfaces and design extremes, and
to execute and verify every branch.

USABILITY -- The characteristic of software which is indicative of its respon-
siveness to human factors considerations. It is a measure of how well the
software has utilized natural and convenient techniques for human operation.

VALIDATION - The evaluation, integration and test activities carried out at

the system level to ensure that the system satisfies the performance and
design criteria in the system specification.

A 12

g r%.2 J, 
' € ' ' ' . ' ' ' ' . ' ' . ' ' ' ,

', - .' ' - -° '"-'. . , ' - '- ' '. . .-. " . . -. -"* • -4a. '



VALIDITY -- The ability of the computer program to provide the performance,
functions and interfaces that are sufficient for beneficial application in
the intended user environment. Validity pertains to the specifications as
well as the resulting software.

VERIFICATION - The interactive process of determining whether the product of

each step of the configuration item development process fulfills all of the
requirements levied by the previous step.

VERSION DESCRIPTION DOCUMENT -- This document provides a file that indicates
the exact information on the software media and accompanies a configuration
item to provide pertinent data regarding the computer program. -'

WALKTHROUGH - A process by which a team of programming personnel do an in-
depth review of a program or portion of a program by inspection to detect
errors and improve program reliability. -

''9-

A-3

A.

A- 13-.



'4 APPENDIX B

LITERATURE REFERENCE LIST

B-i

e. it zil



ANNOTATED BIBLIOGRAPHY

1) TITLE: SOFIWARE RELIABILITY MODELLING AND ESTIMATION TECHNIQUES Z4

AUTHOR: AMRIT L. GOEL, SYRACUSE UNIVERSITY
DOC DATE: 82/10
SOURCE: RADC
ABSTRACT: This report presents the results of the software reliability

modelling and estimation research pursued under contract
A, F30602-78-C-0351 during the period October 1978 - October

1981. Two new models of very general applicability are intro-
duced and the necessary mathematical and practical details
are developed in this report. A new methodology for deter-
mining when to stop testing and start using software is de-
scribed and developed. Finally a new model for analyzing the
operational performance of a combined hardware-software sys-
tem is reported even though it was not a part of the original - -

research plan.

2) TITLE: COMBINED HW/SW RELIABILITY MODELS
AUTHOR: HUGHES CO., L. JAMES, J. BOWEN, J. MCDANIEL
DOC DATE: 82/4
SOURCE: RADC-TR-82-68
ABSTRACT: A general methodology is developed for combining hardware and

software reliability. Based on this general methodology, a
baseline combined HW/SW reliability was developed incorpo-
rating and unifying the SW reliability theory of Jelinski-

". Moranda, Geol-Okumoto with traditional HW reliability theory.
The baseline model is computerized and includes various HW/SW
failure and repair characteristics, allowance for imperfect
SW debugs and modes of HW/SW interaction. Finally a HW/SW ....

tradeoff procedure is developed using a combined HW/SW avail-
ability measure. Examples are provided to illustrate the
general theory and tradeoff procedure. 4

B'2

B- 2

AL A;- . . .... . '- .- , .. A " ,, *A .- ' . , ' . ' ' .. ' .AA .- • . .- .. .., --. .. . .-' ; :. ...A .A , A -.5A A--, -. .., A.. :. .,. . '. , , , ,:... ? . ,, . . ..



ANNOTATED BIBLIOGRAPHY

3) TITLE: EXECUTIVE SUMMARY OF COMMUNICATIONS PROCESSOR OPERATING

SYSTEM STUDY
AUTHOR: JULIAN GITLIN

DOC DATE: 80/11
SOURCE: RADC-TR-80-316
ABSTRACT: This report is an executive summary prepared by the RADC pro-

gram manager for the communications processing operating sys-
tem program accomplished by Plessey Fairtield and Data Indus- -.

tries for RADC under contract F30602-76-C-0456. The CPOS
final report consists of nine volumes which include the major
technical areas of concern in designing a secure, accountable
and reliable operating system that would control the hard-
ware/software resources of an integrated switching node for
the defense communications system in the 1990's. The CPOS
final report consists of nine volumes:

1. Communications Switch Operating System Study
Requirements Analysis

2. Software Reliability Study
3. Security Considerations Study
4. Operating System Survey
5. Candidate Selection
6. Implementation Methods Study
7. Verification and validation
8. Design Specification
9. Experimentation

Although preparation of reliable software depends on an un-
derstanding of the type of errors that occur and their causes,
fault analysis or failure mode analysis often are not appli-
cable because software errors are less systematic than hard-
ware errors. The use of a system-wide design procedure and
a program support library have been recommended to offset
errors induced by the individual skills and thought processes
of the programming staff. No single reliability modelling
approach has been able to handle the probabilistic estimates
of errors remaining in a program. Use of a comprehensive
error detection log and several models serve as management
indicators of program reliability, but will not serve as for-
mal acceptance criteria. Failure detection and recovery are
necessary elements of program design, but error correction is
not recommended. Implementation methods recommended include
(1) imposition of DoD standards and guidelines, (2) PERT man-
agement methodology, (3) modular design, (4) top down design,
(5) HOL, (6) structured progranming, (7) top down program-ruing, (8) automated debugging tools, and (9) formal design

methodology.

-< . .i--- ~ - - ...-.K I. 

. .



Z, .

ANNOTATED BIBLIOGRAPHY

4) TITLE: SSD SYSTEMS EFFECTIVENESS SOFIWARE RELIABILITY STANDARD
:-." ,AUTHOR: LOCKHEED/W. HANSEN

DOGC DATE: 80/5/1
SOURCE: RADC/LOCKHEED MISSILES AND SPACE COMPANY, INC.
ABSTRACT: This standard provides computer software reliability develop-

ment engineering practices oriented toward modern development
techniques for use in project planning and procurement. It is
designed to compliment the "SSD Standards and Practices for
Software Engineering" manual for those projects with specific
quantitative reliability requirements or goals. The overall
intent of this reliability standard is to assure that relia-

- bility requirements will be achieved with a minimum of cost/
*. design/technical risk. In addition, justifiable functionally

equivalent approaches or solutions will be considered. All
reliability procedures and techniques herein are intended to

O allow equivalent substitutions when approved.

5) TITLE: COMMUNICATIONS PROCESSOR OPERATING SYSTEM TASK-2 RELIABILITY
CONSIDERATIONS

AUTHOR: PLESSEY FAIRFIELD/DATA INDUSTRIES, R. WAXMAN, R. DOMITZ,
GOLDBERG

DOC DATE: 80/6
SOURCE: RADC-TR-80-187,VOL II OF NINE
ABSTRACT: This document, a part of the series whose executive summary

,-., is covered in reference 0003, attempts to define and quantify
the concept of software reliability. It covers (1) software
errors, (2) software reliability from the viewpoint nf pro-
gran ing techniques, (3) operational techniques for assuming
software with a given level of reliability, and (5) integrity
of a system that undergoes catastrophic failure.

B]

",,

, - ., ' - ,

* . , , 4 . I , " / , . . , ' ' " , - ' " ' - " - ' " ' ' " " , " - - " " - - - , , " , ' " , / / . '" - ""." " " " " -- -" " " ' " " . " '



ANNOTATED BIBLIOGRAPHY

6) TITLE: SOFTWARE RELIABILITY: REPETITIVE RUN EXPERIMENTATION AND
MODELING

AUTHOR: BOEING/P. NAGEL, J. SKRIVAN
DOC DATE: 82/2
SOURCE: RADC/NASA CR-165836
ABSTRACT: Boeing conducted a controlled software-development experiment

in support of software-reliability estimation and modelling.
Two programmers individually designed and coded three pro-
grams each from three specifications. These programs were
executed in repetitive run sampling, where failure data was
recorded on each of a series of program states.
The data was used to verify that interfailure times are expo-
nentially distributed, to obtain estimates of the failure
rates of individual errors and to demonstrate how widely the
rates vary. This latter fact invalidates many of the popular
software reliability models now in use. It was observed that
the log failure rate of interfailure time was nearly linear
as a function of the number of errors corrected.
Cox's proportional hazards model is proposed as a new model..
Estimates for the unknown parameters were obtained for all
programs. A tentative physical predictor was proposed based
on Halstead's information criteria N which might be used in
forecasting model parameters.

7) TITLE: PROCEEDINGS SEMINAR ON IMPROVING AVAILABILITY OF HW-SW
SYSTEMS

AUTHOR: LOS ANGELES CHAPTERS OF COMPUTER SOCIETY, IEEE ; RELIABILITY

SOCIETY
DOC DATE: 82/11/13
SOURCE: RADC
ABSTRACT: The rapid development in Computer Technology of the past two

decades has brought with it an urgent need to provide ad-
vanced methods of fulfilling the potential of these hardware-
software systems in the user environment. However, the
differences of skills and working environments between hard- .--

ware and software designers has frequently clouded the under-

standing, responsibility and needed contribution of each
discipline's role.

5.. •



.. ,

ANNOTrATED BIBLIOGRAPHY

8) TITLE: SOFTWARE RELIABILITY STUDY
AUTHOR: TRW/T. THAYER
DOC DATE: 76/3/19

SOURCE: RADC
ABSTRACT: A study of software errors presented. Techniques for catego-

rizing errors according to type, identifying their source and
detecting them are discussed. Various techniques used in an- _z

* alyzing empirical error data collected from four large soft-
ware systems are discussed and results of analysis are pre- ' -

sented. Use of results to indicate improvements in the error
prevention and detection processes through use of tool and

techniques is also discussed. A survey of software relia-
bility models is included, and recent work on TRW's Mathe-
matical Theory of Software Reliability (MTSR) is presented.
Finally, lessons learned in conjunction with collecting soft-
ware data are outlined, with recommendations for improving
the data collection.

- 9) TITLE: PERFORMANCE ENGINEERING OF SOFIWARE: A CASE STUDY
AUTHOR: C. SMITH/DUKE UNIV., J. BROWNE/UNIV. OF TEXAS AT AUSTIN
Doc DATE: 82
SOURCE: iDC

ABSTRACT: ?his paper summarizes the concepts of performance engineering
in large software systems and illustrates the application of
performance engineering techniques to the early design phase
of a large database system.

Performance engineering is a methodology for evaluating the
performance of software systems throughout their life cycles.

The case study given here demonstrates that it is possible to
predict resource usage patterns of complex software systems
even in early design phases of the system, although detailed
predictions of resource usage are not likely to be validated.
The results presented here show the leverage of considering
performance implications in the early design phases of a
software project.

B 6

°,.

- .4... . ',",. e"," -,," .". ." , ", '. . ., , 2 
" ' ' ' '' 

.4 ' ''' ,.-.. . . ' '-, , .2 ---.,". , ,. ,,' " , ', . . ,''- .' ' -. . . .,."','' . k". . ." ." , ,, . ,'

'.4 e . 'V ' , ;. , ...- ." .. . . . . .' ' " . . . . ", . . . . " " " " . . .. "'"



',.

ANNOTATED BIBLIOGRAPHY

10) TITLE: INCREASING INFORMATION SYSTEMS PRODUCTIVITY
AUTHOR: C. SMITH/DUKE UNIVERSITY
DOCDATE: 81/5
SOURCE: RADC
ABSTRACT: Performance engineering is defined as a practical discipline

for use through the life cycle to increase information system
productivity. Productivity is increased through maintenance
of output with the same number of personnel, in a shorter 6.

time, and with a broader customer base attraction. Considera-
tions in performance improvement include: (1) Product use,
(2) Design Definition and Alternatives, (3) Design Update
Definition and Alternatives, (4) Host Computer, and (5)
Operational Constraints. These are evaluated in a "best
case" environment in early stages of software development,
with more detailed average performance analysis following.
The goal is to continually improve design. Factors critical
to success of a performance engineering project are: (1) Man-

- agement Commitment, (2) Schedule adjustment, (3) Credibility
of results, (4) Timely results, (5) Justification of recom-
mendations, (6) Optimistic vs realistic analysis, and (7)
Cooperative effort. A schedule that allows performance engi-
neering, based upon realistic use scenarios, will build a
higher quality product.

11) TITLE: SOFTIWARE RELIABILITY - BIBLIOGRAPHY
AUTHOR: BALBIR S. DHILLON
DOC DATE: 81/9 L

SOURCE: MMC
ABSTRACT: This paper presents a brief introduction and an extensive

bibliography of topics in software reliability and related
areas.

12) TITLE: A COMPATIBLE HARDWARE/SOFWARE RELIABILITY PREDICTION MODEL
AUTHOR: X. CASTILLO, T. SMITH
DOC DATE: 81/7/22

is SOURCE: CARNEGIE-MELLON UNIVERSITY
ABSTRACT: A new modeling methodology to characterize failure processes

in Time-Sharing systems due to hardware transients and soft-
ware errors is presented. The basic assumption made is that
the instantaneous failure rate can be approximated by a de-
terministic function of time plus a zero-mean stationary
Gaussian process, both depending on the usage of the resource
considered. The probability density function of the time to -
failure obtained has a decreasing hazard function. Impli- -,

cations of this methodology are discussed.

8 7

N.-

" " " ' '".,...-, . , . ...,- , . .'-, - ,. ,,. . -% . * p:. . • -.. .. ,,. ,-?: -I



°..

ANNOTATED BIBLIOGRAPHY

13) TITLE: MANAGEMENT OVERVIEW OF SYSTEM TECHNICAL SUPPORT PLAN FOR
THE FIRE-FINDER SYSTEM SLtPPORT CENTER

AUTHOR: L. HESELTON/SEMCOR, INC
DOC DATE: 80/8/8
SOURCE: NTIS AD-A095555
ABSTRACT: This System Technical Support Plan outlines the way to cor-

rect software problems on counter-mortar and counter-artillery
radars. It was found that training field repairmen in system
software was not a cost effective way to correct software
problems. A system support center was established to resolve
software faults or problems instead. They support field
personnel in determining if a problem is caused by a hardware
or software fault, and correct software faults. The support
center determines: 1) fix, 2) testing to be performed, and
3) releases.

14) TITLE: FAULT DETECTION EFFICIENCY MEASUREMENT VIA HW FAULT SIMULATION
AUTHOR: C. TIMOC/TIMOC INTERNATIONAL CO.
DOC DATE: 80/3
SOURCE: NTIS
ABSTRACT: The overall objective of this program is to provide the means

for testing so as to assure nearly fault-free operation. A
. more specific objective is to measure the stuck fault detec-

tion efficiency of the test vectors developed by JPL/Hughes
for the MIL-M-38510/470 NASA.
A hardware stuck fault simulator for the 1802 microprocessor
was implemented and the stuck fault detection efficiency of
the test vectors developed by JPL/Hughes for the MIL-M-
38510/470 NASA were measured in three phases as follows:

Phase 1. Build a breadboard system to perform the fault-
free function of the 1802.

".4- Phase 2. Add fault simulation capabilities to the fault-
free breadboard.

Phase 3. Measure the stuck fault detection efficiency of
the test vectors.

A total of 874 faults were injected into the combinatorial
and sequential parts of the RCA 1802 microprocessor and it N.
was found that 39 stuck faults were not detected. Therefore,

A., the measured stuck fault detection efficiency of the MIL-M-
38510/470 NASA is 95%. Since the 39 undetected faults can
create catastrophic errors in equipment designed for high
reliability applications, it is recomended that the MIL-M-
38510/470 NASA be enhanced with additional test vectors so as
to achieve 100% stuck fault detection efficiency.

B- 8

* A
T

P . " . ' . " . . . , " " - " . " . P - P - , " . " - " -" - " *.; V " - " 2 , " . " . " : .



ANN(YrATED BIBLIOGRAPHY

15) rITLE: FAUL'r-'IJLERAur SOFIWARE FOR SPACECRAFT APPLICATIONS
AUT4HOR: H. HECHT/AEROSPACE CORP.
DOC DATE: 75/12/10
SOURCE: NTIS AD A022068

, ABSTRACT: Fault-tolerant computers have been developed for applications
that require a very high degree of hardware reliability, and

it is frequently asked whether similar techniques can be
A brought to bear on software for critical applications, e.g.,

ascent guidance software on launch vehicles, launch-control
software for ground computers, and control and command soft-
ware. The principal techniques employed in hardware fault
tolerance are seen to be applicable also through software

fault tolerance: error detection, protective redundancy, and
rollback provisions. Of course, they need to be implemented
in a specific manner; particularly the redundancy must be

*provided by a different code than that used for the primary
modules.
The recovery block (proposed by Randell), with the addition
of a watchdog timer, has been implemented in a number of
skeleton routines and has been found quite suitable in con-
nection with the established structure for spaceborne soft-
ware.
A reliability model is proposed that shows a very consider-
able reduction in failure probability even when the fault-
tolerance provisions themselves are far from perfect. It is
therefore believed that the time is quite ripe to undertake
serious studies of fault-tolerant software for space appli-
cations.

16) TITLE: THE COST OF SOFTWARE FAULT TOLERANCE
Akrr~hOR: G. MIGNEAULT/NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

DOC DITE: 82/9
SOUR~CE: mrIS
ABSTRACT: This paper proposed the use of software fault tolerance tech-

niques as a means of reducing software costs in avionics and
as a means of addressing the issue of system unreliability
due to faults in software. A model is developed to provide aview of the relationships among cost, redundancy, and relia- [ '

bility which suggests strategies for software development and
maintenance which are not conventional.

Observations are made about the problen of escalating budget

for software and about the nature of some of the causes of
increasing software cost. Attention is paid to schemes for
using dissimilar redundancy in software to obtain a high
level of reliability.

-w B- 9U

B 9.

, ,"-.'- -
%.z . . " . , . . , ,, . , ". . , . - . . ,' ,\, ,. , , . , ,



s ,: -'.

ANNOTATED B I BL IOGRAPHY

17) TITLE: EXCEPTION HANDLING AND SOF IWARE FAULT TOLERANCE
AUTHOR: F. CRISTIAN
DOC DATE: 82
SOURCE: NTIS
ABSTRACT: Some basic concepts underlying the issue of fault tolerant

software design are investigated. Relying on these concepts
a unified point of view on programmed exception handling
based on backward recovery is constructed. The cause-effect
relationship between software design fault and failure occur--
rences is explored and a class of faults for which exception
handling can provide effective fault tolerance is charac.-
terized. It also shows that there exits a second class of
design faults which cannot be tolerated by using default ex-
ception handling. The role that software verification methods
can play in avoiding the production of such faults is dis-
cussed.

18) TITLE: PRODUCTION OF RELIABLE FLIGHT CRUCIAL SOFIWARE: VALIDATION
METHODS RESEARCH FOR FAULT TOLERANT AVIONICS AND CONTROL[.. SYSTEMS SUB-WORKING GROUP MEETING.

AUTHOR: J. DUNHAM, J. KNIGHT/RESEARCH TRIANGLE INST.DOC DATE: 82/5 -
fU-SOoNCE: NTIGSRPEI

ABSTRACT: The state of the art in the production of crucial software
for flight control applications was addressed. The associ-
ation between reliability metrics and software is considered.
Thirteen software development projects are discussed. A short
term need for research in the areas of tool development and
software fault tolerance was indicated. For the long term,
research in format verification or proof methods was recom-
mended. Formal specification and software reliability rood-

,', eling, were recommended as topics for both short and long
term research.

B- 10

,-,-,, -*. , . - -- ", " . - "

. . . . . . . . . . . .. . .. . . . . . . . .



ANNOTATED BIBLIOGRAPHY

19) TITLE: AN OVERVIEW OF RELIABLE COMPUTER SYSTEM DESIGN.
AUTHOR: J. MC DONALD/ROYAL SIGNALS AND RADAR ESTABLISHMENT
DOC DATE: 79/11
SOURCE: NTIS L
ABSTRACT: This paper was produced to support a series of lectures on

reliable computer system design given at a NATO ASI sunmmer
school on multiple processor computers. The paper was in-
tended to be fairly self-contained, but it does lack a de-
scription of a practical fault tolerant system.
The paper presents an overview of reliable computer system
design. It attempts to provide a pragmatic guide to redun-
dancy and recovery, but does not give a very thorough discus-
sion of either the theory or philosophy of reliable systems.
The paper introduces and defines the basic concepts of reli-
ability, and describes the basic mechanisms for achieving
fault tolerance. It compares the attributes of multi-pro-
cessor and multi-computer systems from the point of view of

reliability. It describes in some detail techniques for
achieving tolerance to both hardware and software faults. The
paper concludes by outlining some of the major unsolved prob-
lems of reliable system design.

20) TITLE: ANALYSIS OF FAULT DETECTION, CORRECTION, AND PREVENTION IN
INDUSTRIAL COMPUTER SYSTEMS

AUTHOR: E. SCHAFFER, T. WILLIAMS/PURDUE UNIV.
DOC DATE: 77/9
SOURCE: NTIS
ABSTRACT: This research is concerned with three fault-tolerant computer

methods for meeting reliability requirements: (1) Hardware
redundancy is defined as any circuitry in the system not nec-

essary for normal computer operation should no faults occur;
(2) Software redundancy is defined as additional program
instructions present solely to handle faults; and (3) Time
redundancy is defined as any retrial of instructions. In
order to provide an understanding of the fault-tolerant meth-
ods under study today, examples of their uses and limitations ..

are presented. Hardware aspects of coding and modular redun-
dancy are discussed. Discussions of software include means of
protection, detection, and correction of software faults
through software as well software methods to handle hardware

errors. These methods include diagnostics as well as execu-
tive recovery techniques and retrials of instructions through
time redundancy. Present day computer capabilities also are
presented. Finally, duplex & triplex fault-tolerant indus-
trial computer systems are discussed that may be built from
conventional computers with little or no need for expensive
additional hardware. 77,

B -i



ANNOTATED BIBLIOGRAPHY

21) TITLE: EFFECTS OF FAILURE ON PERFORMANCE OF GRACEFULLY DEGRADABLE
SYSTEMS

AUTHOR: J. LOSQ/STANFORD UNIV.
DOC DATE: 76/12
SOURCE: NTIS AD-A049849
ABSTRACT: The recent development of multiprocessor systems that offer

resistance to faults by gracefully degrading after a failure
opens vast new ranges of applications for fault tolerance and
high reliability. The paper presents a general model for the
evaluation of such systems. It takes into account the inter-
nal structure of the hardware, the characteristics of the
various detection mechanisms, the unreliability of the soft-
ware and even the type of applications these systems are used
for. It provides many measures of the systems' performance
such as: availability, meantime between crashes, average
processing power and proportion of time spent in degraded
mode. System optimization gives the best values for the num-
ber of processors, memories, ... , and shows the trade-offs

., . between hardware and software fault-detection mechanisms. The
model is illustrated by a concrete example.

22) TITLE: SOFfGARE QUALITY ASSURANCE
AUTHOR: ED SOISTMAN
DOC DATE: JUNE 1979
SOURCE: UNIVERSITY OF CENTRAL FLORIDA
ABSTRACT: The problems associated with software development and use are

investigated from a management point of view. Having iden-
tified the critical aspects of effective software management,

- -an approach is suggested for the creation and implementation
of a software quality assurance program. Particular attention

.- . is focused on the concept of Life Cycle Procurement as cur-
rently utilized by the Department of Defense.

23) TITLE: ENGINEERING RELIABILITY - NEW TECHNIQUES AND APPLICATIONS
AUTHOR: B. DHILLON N

DOC DATE:
SOURCE: MMC
ABSTRACT: This article stresses that most of the work in the area of

software reliability can be divided into the following three
categories.
1. Writing correct programs to begin with.
2. Testing the programs to take out bugs.

3. Modeling of software in an attempt to predict its relia-
bility and possibly study the impact of related parameters.

The following models were discussed
Shooman, Markov and Jelinski-Moranda.

B- 12

,.



-- 4-

ANNOTATED BIBLIOGRAPHY

.,4

24) TITLE: THE SOFIWARE DEVELOPMENT NOTEBOOK - A PROVEN TECHNIQUE
AUTHOR: JOHN McKISSICK JR AND ROBERT A. PRICE
DOC DATE: 1979
SOURCE: PROCEEDINGS 1979 ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: The continuing need for improved computer software demands 4:

improved software development techniques such as the Software
Development Notebook. The organization, content, use and
audit of Software Development Notebooks are documented in
this paper. Experience and results from the application of
this technique are also presented.

25) TITLE: QUANTITATIVE SOFTARE RELIABILITY MODELS - DATA PARAMETERS

- AUTHOR: DOROTHY SWEARINGEN AND JOHN DONAHOO
DOC DATE: OCTOBER 1979
SOURCE: WORKSHOP ON QUANTITATIVE SOFTWARE MODELS, NY, OCT. 1979.
ABSTRACT: This paper summarizes the results of a study to identify data

requirements for software reliability modelling. Brief de-
scriptions of the models and the data needed to exercize the
models are presented. The paper concludes with a list of
recommendations for future data collection.

26) TITLE: MODULARITY IS NOT A MATTER OF SIZE

AUTHOR: ROBERT H. DUNN AND RICHARD S. ULLMAN
DOC DATE: 1979
SOURCE: PROCEEDINGS 1979 ANNUAL RELIABILITY AND MAINTAINABILITY

- ", SYMPOSIUM
ABSTRACT: Division of a computer program into a number of smaller pro-

grams designated as modules is a universally accepted prac-
tice among software engineers. A modular architecture offers
the following advantages: C,

- Parallel Development

- Reduced program size and costs
- Understandability
- Reliability
- Testing

B 13

• -... ..r, , ',-,- ...., -.. ..",",. -."-. ...." , '" ,". •, -" , '.-. "": -L ..-. ': ''-:- -"V '  -" 7]'
S%.'

• 4" . .. - . , ,-. ,. .- ,. - , -.. • , .. ., ,- . . .n t . . ... . • -. • , ,, . " ,, ,, . " ,- r "



..--- r r .Jq r- -i

t . J 4'1 
1

ANNOTATED BIBLIOGRAPHY

27) TITLE: AN ANALYSIS OF ERRORS AND THEIR CAUSES IN SYSTEMS PROGRAMS
AUTHOR: ALBERT ENDRES, IBM GERMANY, BOEBLINGEN, GERMANY"'Jl

DOC DATE: APRIL 1975
SOURCE: INTERNATIONAL CONFERENCE ON RELIABLE SOFTWARE,APRIL 1975
ABSTRACT: Program errors detected during internal testing of the oper-

ating system DOS/VS form the basis for an investigation of
error distributions in system programs. Using a classifi- j
cation of errors according to various attributes, conclusions
can be drawn concerning the possible causes of these errors.
The information thus obtained is applied in a discussion of

the most effective methods for detection and prevention of
errors.

" 28) TITLE: METRICS FOR EVALUATION OF QUANTITATIVE SOFTWARE MODELLING
DATABASES '.4-

AUTHOR: JON MARTENS, lIT RESEARCH INSTITUTE, ROME, NY
DOC DATE: OCTOBER 1979
SOURCE: WORKSHOP ON QUANTITATIVE SOFTWARE MODELS, NY, OCT. 1979
ABSTRACT: Two metrics for evaluating software modelling databases are

developed in this paper. The integration metric measures the
degree of data element sharing between datasets; the coverage
metric measures the datasets' ability to fulfill a model's
requirements.

29) TITLE: SOFIWARE QUALITY METRICS FOR LIFE-CYCLE COST-REDUCTION
AUTHOR: GENE F. WALTERS AND JAMES A. McCALL
DOC DATE: AUGUST 1979
SOURCE: IEEE TRANSACTIONS ON RELIABILITY VOL R-28 #3, AUGUST 1979
ABSTRACT: This paper identifies factors or characteristics of which

reliability is one, which comprise the quality of computer
software. It then discusses their impact over the life of a
software product and describes a methodology for specifying
them quantitatively, including them in system design, and
measuring them during development. The methodology is still
experimental, but is rapidly evolving toward application in
all types of software. The paper emphasizes those factors
of software quality which have the greatest importance at the
later stages of a software products life.

[I ... ,.

B -14

44.4 . ... .. .4 ~ ... . .

L' -... " ", .. - " ."- -



ANNOTATED BIBLIOGRAPHY

30) TITLE: SPECIAL SERIES ON SYSTEM INTEGRATION

AUTHOR: ELECTRONIC DESIGN AND SYSTEMS & SOFARE--
DOC DATE: 83/4/14
SOURCE: MMC
ABSTRACT: Tools have become available to catch errors as soon as pos-

sible in the software development cycle. These include the
familiar syntax and data type checkers, as well as automatic
change and configuration control bookkeepers. Specification
language checkers are even available to reject errors from
the start. The article covers some of these programs, and
describes a reliability predictor that uses rate of error

discovery statistics to compute MTBF. The rate of closure
from the observed to desired has been validated on 20 pro-
graimming projects and is described as suitable for use in
scheduling program delivery to the customer. Ada relia-
bility aspects are also mentioned.

31) TITLE: A GENERAL SOFIARRE RELIABILITY MODEL FOR PERFORMANCE PREDICTION
AUTHOR: J. SHANTHIKUMAR/SYRACUSE UNIV.
DOC DATE: 81/3/2
SOURCE: MICROELECTRON RELIABILITY VOL. 21
ABSTRACT: In this paper we give a general Markov process formulation

for a software reliability model and present expressions for

software are performance measures. We discuss a general model
and derive the maximum likelihood estimates for the required
parameters of this model. The generality of this model is
demonstrated by showing that the Jelinski-Moranda model and
the Non-Homogeneous Poisson Process (NHPP) model are both
very special cases of our model. In this process we also cor-
rect some errors in a previous paper of the NHPP model.

2."2

B -15

J6:
- '4 .% - -*-. ' .. ' ' .- '- ', . ' . ' .- . " - '""''-...-.- - " '" - - - ,""'' - '. . ¢ " ,. . . . 2

.. .. 4. ..... .. .._. ... # '. ............ ,..#.'.
•

... . ... 2 . #. _.,.. .-_ '" h .'. " , __ 4. . . 4 -



ANNOTATED BIBLIOGRAPHY

32) TITLE: SOFTWARE RELIABILITY - STATUS AND PERSPECTIVES
AUTHOR: C. RAMAMOORTHY, F. BASTANI
DOC DATE: 81/12/21
SOURCE: IEEE TRANSACTIONS ON SOFIWARE ENGINEERING 7/82
ABSTRACT: It is essential to assess the reliability of digital computer

systems used for critical real-time control applications
(e.g, nuclear power plant safety control systems). This in-

volves the assessment of the design correctness of the com-
bined hardware/software system as well as the reliability of
the hardware. In this paper we survey methods of determining
the design correctness of systems as applied to computer pro-
grams. Automated program proving techniques are still not
practical for realistic programs. Manual proofs are lengthy,

tedious, and error-prone. Software reliability provides a
measure of confidence in the operational correctness of the

*software. Since the early 1970's several software reliability
models have been proposed. We classify and discuss these
models using the concepts of residual error size and the
testing process used. We also discuss methods of estimating
the correctness of the program and the adequacy of the set of
test cases used. These methods are directly applicable to
assessing the design correctness of the total integrated
hardware/software system which ultimately could include large
complex distributed systems.

33) TITLE: LIKELIHOOD FUNCTION OF A DEBUGGING MODEL FOR COMPUTER
SOFTWARE RELIABILITY

AUTHOR: B. LITmLWOD, J. VERRALL/CITY UNIVERSITY, LONDON
DOC DATE: 82/6/02
SOULRCE: IEEE TRANSACTIONS ON RELIABILITY , VOL R-30, NO. 2, 6/81
ABSTRACT: A simple model for software reliability growth, originally sug-

gested by Jelinski & Moranda, has been widely used but suffers
from difficulties associated with parameter estimation. It is
shown that a major reason for obtaining nonsensical results from
the model is its application to data sets which exhibit decreas-
ing reliability. Presented is a simple, necessary and sufficient
condition for the maximum likelihood estimates to be finite and
suggest that this condition be tested prior to using the model.

B -16

V -. V b % ~ 'h'. .......... * .......



ANNOTATED BIBLIOGRAPHY

34) TITLE: A SUMMARY OF THE DISCUSSION ON "AN ANALYSIS OF COMPETING
SOFIWARE RELIABILITY MODELS"

AUTHOR: AMRIT L. GOEL
DOC DATE: 80/9
SOURCE: IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, 9/80 -- 4

ABSTRACT: In March 1978, Schick and Wolverton published a paper in theIEEE Transactions On Software Engineering. Moranda (later)

criticized several aspects of this paper. His critique was
reviewed by Littlewood and rebutted by Schick and Wolverton.
The purpose of this note is to summarize and comment on the
main points raised.

35) TITLE: THEORIES OF SOFTWARE RELIABILITY: HOW GOOD ARE THEY AND HOW

CAN THEY BE IMPROVED
AUTHOR: B. LITIEE1"OD
DOC DATE: 79/3/23
SOURCE: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 9/80

ABSTRACT: An examination of the assumptions used in early bug-counting
models of software reliability shows them to be deficient.
Suggestions are made to improve modeling assumptions and ex-
amples are given of mathematical implementations. Model ver-
ification via real-life data is discussed and minimum re-
quirements are presented. An example shows how these require-

ments may be satisfied in practice. It is suggested that cur-
rent theories are only the first step along what threatens to
be a long road.

B.'17

-4.-c

.4'd

4.I

B -17,,.

- .4 4 -.- 4 4 - ~ ' *44 - • 4

I7S-A~~j;c 1 ."' 4*4



f-A165 231 IMPACT OF HARDIJARE.'SOFTUARE FAULTS ON SYSTEM 2/3
RELIABILITY VOLUME £ STUDY R..CU) MARTIN MARIETTA
AEROSPACE ORLANDO FL E C SOISTMAN ET AL. DEC 85

IUNCLASSIFIED OR-i8i73 RADC-TR-85-228-VOL-1 F/6 9/2 NL

EhEmhhohhhhhhI
mhsohhEmhohmhhE
EmmhEEEEmhhEEEI
EEmhohEEEEmhEE
EEmhhhEEEEEEEI



ij.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARDS-1963 4

if I -,3 .i 2

-PII ___

" - .. ','" '. s ,' ; z.
, ' ,,; ,;".".: " ," :"- . :.. , ' , ' ," .-. ." ,-,',.!'., ,.',,, . " 

I',,',, 
, "- -Ill 

" .. . ..



ANNOTATED BIBLIOGRAPHY

'4 36) TITLE: A USER-ORIENTED SOFTWARE RELIABILITY MODEL
AUTHOR: R. CHEUNG
DOC DATE: 79/8/13
SOURCE: IEEE TRANSACTIONS ON SOFIWARE ENGINEERING
ABSTRACT: A user oriented reliability model has been developed to meas-

ure the Reliability that a system provides to a user com-
',. munity. It has been observed that in many systems, especially

software systems, reliable service can be provided to a user
when it is known that errors exist, provided that the service
requested does not utilize the defective parts. The relia-
bility of service therefore, depends both on the reliability
of the components and the probabilistic distribution of the
utilization of the components to provide the service. In
this paper, a user-oriented software reliability figure of
merit is defined to measure the reliability of a software
system with respect to a user environment. The effects of the
user profile, which summarizes the characteristics of the
users of a system, on system reliability are discussed. A
simple Markov model is formulated to determine the relia-
bility of a software system based on the reliability of each
individual module and the measured intermodular transition
probabilities as the user profile. Sensitivity analysis tech-
niques are developed to determine modules most critical to
system reliability. The applications of this model to develop
cost-effective testing strategies and to determine the ex-
pected penalty cost of failures are also discussed. Some
future refinements and extensions of the model are presented.

37) TITLE: MODELS FOR HARDARE-SOF7WARE SYSTEM OPERATIONAL-PERFORMANCE

EVALUATION
AUTHOR: A. GOEL, J. SOENJOTIO/SYRACUSE UNIVERSITY
DOC DATE: 81/5/18
SOURCE: IEEE TRANSACTIONS ON RELIABILITY, 8/81
ABSTRACT: Stochastic models for hardware-software systems are developed

and used to study their performance as a function of hard-
ware-software failure and maintenance rates. Expressions are
derived for the distribution of time to a specified number of
software errors, system occupancy probabilities, system reli-
ability, availability, and average availability. The behavior
of these measures is investigated via numerical examples.

B -18

.4 . . .%,9.



ANNOTATED BIBLIOGRAPHY
,%,

" 38) TITLE: STOCHASTIC RELIABILITY-GROWTH: A MODEL FOR FAULT-REMOVAL IN
' COMPUTER PROGRAMS AND HARDWARE-DESIGNS

' AUTHOR: B. LITTLEWOOD/CITY UNIVERSITY, LONDON
DOC DATE: 81/1/12

SOURCE: IEEE TRANSACTIONS ON RELIABILITY, 10/81
ABSTRACT: An assumption conmonly made in early models of software reli-

ability is that the failure rate of a program is a constant
multiple of the (unknown) number of faults remaining. This
implies that all faults contribute the same amount to the
failure rate of the program. The assumption is challenged
and an alternative proposed. The suggested model results in
earlier fault-fixes having a greater effect than later ones
(the faults which make the greatest contribution to the over-
all failure rate tend to show themselves earlier, and so arefixed earlier), and the DFR property between fault fixes

(assurance about programs increases during periods of fail-
ure-free operation, as well as at fault fixes). The model
is tractable and allows a total execution time to achieve a
target reliability, and total number of fault fixes to target
reliability, are obtained. The model might also apply to
hardware reliability growth resulting from the elimination of
design errors.

3 39) 'r'ITLE: AN ERROR DETECTION MODEL FOR APPLICATION DURING SOFINARE
DEVELOPMENT

NJtrHOR: P. MORANDA/McDONALD DOUGLAS ASTRONAUTICS COMPANY
DOC DATE: 81/1/29
SOURCE: IEEE TRANSACTIONS ON RELIABILITY, 10/81
ABSTRACT: A variation of the Jelinski/Moranda model is described. The

main feature of this new model is that the expanding size of
a developing program is accomuodated, so that the quality of
a program can be estimated by analyzing an initial segment of
the written code. Two parameters are estimated. The data
are: a) time separations between error detections, b) the
number of errors per written instruction, c) the failure rate

*1(or finding rate) of a single error, and d) a time record of
the number of instructions under test. This model permits
predictions of MTTF and error content of software.

B -19

% Z , ,
:- -" ' -...-; - . ... . ::.. . ... .. .: .. : ... : .. : - '. -" . '': :. '" -,. '-..:- . - -' .-- :,,- :" - -,'.-,.- ' '. :



L | . .. . . ...

ANNOTATED BIBLIOGRAPHY

40) TITLE: RELIABILITY AND MAINTAINABILITY OF ELECTRONINC SYSTEMIS --
CHAPTER 6 SOFTWARE RELIABILITY AND MAINTAINABILITY

AUTHOR: J. ARSENAULT
DOC DATE: 79/1
SOURCE: A. FLOWERS
ABSTRACT: This article expounds on attributes which may be employed in

the generation of reliable and maintainable software in--
cluding: modularity, emphasis on system design not coding,
top down approach and structured programming.

41) TITLE: IEEE RELIABILITY SOCIETY NEWSLETTER
AUTHOR: IEEE/SUSAN EAMES, EDITOR

DOC DATE: 83/4
SOURCE: MMC-E. GRIFFIN
ABSTRACT: This document consists of chapter meeting notes and a status

. summary for 1982.

42) TITLE: HARDWARE/SOFTWARE FMECA
AUTHOR: FRED M. HALL; EVALUATION RESEARCH CORP.; ARLINGTON

RAYMOND A. PAUL; SURFACE WEAPONS CENTER; DAHLGREN
WENDY E. SNOW; EVALUATION RESEARCH CORP.; ARLINGTON

DOC DATE: JANUARY 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: (AUTHORS) This paper describes procedures which can be used to

determine reliability REQUIREMENTS for both hardware and soft-
ware elements of a system which incorporates an embedded com-
puter subsystem. The analysis technique, Hardware/Software
Failure Modes, Effects and Criticality Analysis (FMECA) may be
utilized to ENSURE reliable software throughout the software
developmenmt cycle; including requirements definition, coding,
checkout and software test ... H/S FMECA provides a method for
examining software errors at the highest functional levels, then
progressively tracking errors into lower level functions .....

43) TITLE: GROUND LAUNCHED ASSAULT BREAKER FLIGHT PROGRAM PROBLEM REPORT
FILE

AUTHOR: E.L. GRIFFIN
DOC DATE: AUGUST 1982
SOURCE: VARIOUS MARTIN MARIETTA DEVELOPMENTAL TEAM PERSONNEL
ABSTRACT: This log contains the complete set of 166 software problem

reports written against the 14K Ground Launched Assault
Breaker Missile Flight Program. The problem reports reflect
hardware, software, and combination hardware/software prob-
lems for a very complex real-time program that navigates to
a target based on airborne target update data and dispenses
submunitions on a tank.

B - 20

'4;. .,, - .; > ;K , ~ ., , .*., <- *. ' *- . . . . - a . * . . .., ' . . ,.
% %



ANCYTATED BIBLIOGRAPHY a

44) TITLE: CAN SOPIWARE BENEFIT FROM HARDWARE EXPERIENCE
AUTHOR: HERBERT HECHT
DOC DATE: 1975
SOURCE: PROCEEDINGS 1975 ANNUAL RELIABILITY AND MAINTAINABILITY L

SYMPOSIUM
ABSTRACT: (AUTHOR) The question posed in the title is answered with a

qualified "yes". While software requires a completely dif-
ferent attack on failure mechanisms than used for hardware,
there is considerable commonality in reliability organization
and procedures, and some in the systems reliability area. The
present lack of a generally accepted metric for software re-
liability impedes the information transfer from the hardware
field. Steps towards a quantifitative measure for software
reliability are outlines.

45) TITLE: ON SOFTWARE COMPLEXITY
AUTHOR: L. A. BELADY
DOC DATE: OCTOBER 1979
SOURCE: WORKSHOP ON QUANTITATIVE SOFIWARE MODELS, N.Y., OCT. 1979
ABSTRACT: In 1974 there was very little known work on complexity in

general and even less on the complexity of programming. At
that time Professor Beilner and myself shared an office at
Imperial College and according to our mutual interest, dis-
cussed problems of "complex" programs and of large scale pro-
gramming .... We found a sizeable body of work on computational
complexity (and after 5 year's work (ecs)) ... we learned
that complexity can be perceived in at least two different
ways: sometimes it appears as a measure of uncertainty or
surprise and sometimes it is deterministic and is defined as
a count or magnitude. ... The objective of this paper is to
give a brief and a little bit organized survey of this
"complex" repertoire of approaches.

46) TITLE: IN SEARCH OF SOF7WARE COMPLEXITY
AUTHOR: DR. BILL CURTIS, GENERAL ELECTRIC, ARLINGTON VA
DOC DATE: OCTOBER 1979
SOURCE: WORKSHOP ON QUANTITATIVE SOFTWARE MODELS N.Y., OCT. 1979
ABSTRACT: This paper is a summary of a tutorial given on the state-of-

the-art in software complexity research... Different types of
complexity metrics are reviewed along with a framework for
studying large compilations of metrics. Ultimately, a defi-
nition is posed on interactional terms which encompasses di-
verse areas within the field.

,, 1
B -21

.' . '-..,- ' -' . .- '. ' .- ' . ' .° '- - % % '- -;. - " . , , - % .,.- . , -' , ' -,-, . , .-- ° . ' - ' ",



.v.

ANNOTATED BIBLIOGRAPHY

47) TITLE: AN ANTI-COMPLEXITY EXPERIMENT
AUTHOR: L.A. BELADY
DOC DATE: OCTOBER 1979
SOURCE: WORKSHOP ON QUANTITATIVE SOFTWARE MODELS, N.Y., OCT. 1979
ABSTRACT: ... [I]n the early 70's systematic studies of large programs

uncovered an established the evolutionary nature of software,
namely that programs are not static objects but undergo con-
tinuous modification to cope with the everchanging environ-
ment... [Clomplexity, a term which in this context informally
describes the difficulty of predictably manipulating soft-
ware.

48) TITLE: SOFTWARE FAULT TOLERANCE: WHY IT'S NECESSARY AND A

METHODOLOGY
AUTHOR: MYRON HECHT, SOHAR INCORPORATED, LA JOLLA, CA
DOC-DATE: 13 NOV 1982
SOURCE: PROCEEDINGS, SEMINAR ON IMPROVING AVAILABILITY OF HARDMRE-

'V SOFTVWARE SYSTEMS, IEEE COMPUTER SOCIETY, LOS ANGELES
ABSTRACT: As real time control requirements grow more complex and pro-

gressively more demands are placed on the computer system,
software related failures will become increasingly important
contributors to the total number of system failures. This
trend is already evident in the error data collected from
several highly reliable computer systems. Unfortunately, the
complete prevention of faults in complex software is beyond
present technical capabilities. Under these circumstances,
critical applications must provide for the toleration of
software faults (in addition to hardware faults). The recov-
ery block concept presents a widely applicable means for
implementing fault tolerance within a program.

-I..

B -22

.4J



ANNOTATED BIBLIOGRAPHY

49) TITLE: CARE III FINAL REPORT

AUTHOR: L. BRYANT, Bryant, L. GUCCIONE, J. STIFFLER
DOC DATE: 79/11
SOURCE: NTIS/N80-15423
ABSTRACT: This report describes the work done during the first phase of

a two-phase effort to develop a computer program to aid in
assessing the reliability of fault-tolerant avionics systems.
The overall effort consists of five major tasks: 1) Establish
the basic requirements that must be satisfied if the program
is to achieve its overall objective. 2) Define a general
program structure consistent with these requirements. 3)
Develop and program a mathematical model relating the relia-
bility of a fault-tolerant system to the (not necessarily

%4 time-independent) failure rates and coverage factors charac-
terizing its various elements. 4) Develop and program a
mathematical model for evaluating the coverage (probability
of successful recovery) associated with any given fault as a
function of the type and location of the fault, the appli-
cable fault detection and isolation mechanism, and the number
and status of prior faults. 5) Develop and program a pro-
cedure whereby a user of these models can accurately and
conveniently specify the configuration of the system to be
evaluated and the constraints influencing its ability to
recover from faults.
The first three of these tasks were completed during Phase
One; the resulting requirements, program structure, and reli-
ability model are discussed in detail in Volume I of this
report, along with the tradeoffs and sample reliability as-

sessments made in arriving at the approach finally taken. The
Computer Program Requirements Document is contained in Volume
II. This latter volume also includes several appendices con-
taining computer print-outs and other ancillary material sup-

porting the conclusions presented in Volume I.

7.'

B 23

zA

L r La-



ANNOTATED BIBLIOGRAPHY

50) TITLE: FACTORS IN SOFIWARE QUALITY
AUTHOR: JIM A. McCALL, PAUL K. RICHARDS, GENE F. WALTERS
DOC DATE: NOVEMBER 1977
SOURCE: RADC TR-77-369, VOLUMES I,II & III
ABSTRACT: An hierarchial definition of factors affecting software qual-

ity was compiled after an extensive literature search. The
definition covers the complete range of software development
and is broken down into non-oriented and software-oriented

-' characteristics. For the lowest level of the software-ori-
ented factors, metrics were developed that would be indepen-
dent of the programming language. These measurable criteria
were collected and validated using actual Air Force data
bases. A handbook was generated that will be useful to the
Air Force managers for specifying overall quality of the
software system.

51) TITLE: SYSTEM HARDWARE AND SOFTWARE RELIABILITY ANALYSIS
AUTHOR: WILLIAM E. THOMPSON; COLUMBIA RESEARCH CORPORATION;ARLINGTON

p" DOC DATE: 1983
SOURCE: 1983 IEEE PROCEEDINGS OF THE ANNUAL RELIABILITY AND

MAINTAINABILITY SYMPOSIUM
ABSTRACT: This paper presents a practical model and procedure for ana-

lyzing combined hardware and software reliability of embedded
computer systems. The emphasis is on combined hardware and
software reliability qualification testing.

52) TITLE: MIL-S-XXXXX: SOFTWARE RELIABILITY AND MAINTAINABILITY
SPECIFICATION

AUTHOR: ELECTRONIC SYSTEMS DIVISION, HANSCOM FIELD, MASS
DOC DATE: OCTOBER 1983
SOURCE: RADC/RBET
ABSTRACT: This specification requires the establishment and implemen-

tation of a Software Reliability and Maintainability (R&M)
Program by the contractor. The purpose of this program is to
assure that software developed, acquired or otherwise pro-
vided under this contract complies with the requirements ot
the contract. It is intended that the program be effectively
tailored and economically planned and developed in consonance
with, or an extension of the contractor's other reliability,
maintainability, quality assurance, administrative and tech-
nical programs. When referenced,....this specification shall
apply to the acquisition of software either acquired alone or
as part of a system. [It]. .shall also apply to all deliver- 1I
able design, test, maintenance and support software developed
under this contract. For purposes of this specification, the
term software includes firmware.

B -24
' ., *



ANNOTATED BIBLIOGRAPHY

53) TITLE: SOFTWARE RELIABILITY ESTIMATION: A REALIZATION OF

COMPETING RISK
AUTHOR: WAY KUO

DOCDATE: SPRING 1983
SOURCE: MICROELECTRONICS AND RELIABILITY JOURNAL
ABSTRACT: A software reliability model presented here assumes a time-

dependent failure rate and that debugging can remove as well
as add faults with a non-zero probability. This paper pro-
poses a compound-distribution software reliability model. We
make three assumptions.

1) The software originally contains X(0) bugs where X(0)
is a constant to be determined. '

2) Each time interval between failures has a nonconstant
occurrence rate.

3) When a software fault is fixed, an additional error can
be introduced, the probability of correcting or intro-
ducing errors follows a discrete distribution.

54) TITLE: ESTIMATING SOE7WARE DEVELOPMENT
AUTHOR: E. B. DALY

-DOCDATE: JULY 1979
SOURCE: IEEE
ABSTRACT: Programming effort can be estimated and evaluated in terms of

instructions generated per hour. Although this methodoloqy
of judging software effort has been shown to be very effective,
it must be utilized with great care since rates vary dramati-
cally among software jobs having different design objectives,
different program complexity and differennt resources.

55) TITLE: STATISTICAL PREDICTION OF PROGRAMMING ERRORS

AUTHOR: R. W. MOTLEY AND W. D. BROOKS
DOC DATE: 30 NOV 1976
SOURCE: RADC-TR-77-175
ABSTRACT: The need for developing new tools and techniques for pro-

ducing more reliable low cost software.. .has led to attempts
to analyze the nature and types of software errors in order
to be able to accurately predict the reliability of the soft-
ware product .... The report focuses on the analysis, using
multiple linear regression techniques, of software error data
and related structural, complexity, and programmer-related
variables extracted from two large DoD command and control
software pojects totalling over 250,000 lines of higher order
language source code. This eight month study focused on the 7
statistical prediction of programming errors using a wide

range of program structure/complexity variables and selected
programmer variables as predictors.

B -25

% %

. ~~~~~ ~ %/ . . " ":'"€ . $' ' ., ', "" :': , , • .



;% .ANNOTATED BIBLIOGRAPHY

-.- •- -

56) TITLE: DESIGN AND CODE INSPECTIONS TO REDUCE ERRORS IN PROGRAM
-. SDEVELOPMENT

AUTHOR: M. E. FAGAN
DOC DATE: MARCH 1976
SOURCE: REPRINT FROM IBM SYSTEMS JOURNAL, VOL. 15, NO. 3, 1976
ABSTRACT: Substantial net improvements in programming quality and pro-

ductivity have been obtained through the use of formal in-
spections of design and of code. Improvements are made pos-
sible by a systematic and efficient design and code verifica-
tion process, with well-defined roles for inspection partic-
ipants. The manner in which inspection data is categorized

. and made suitable for process analysis is an important factor
in attaining the improvements. It is shown that by using
inspection results, a mechanism for initial error reduction
followed by ever-improving error rates can be achieved.

57) TITLE: MIL-STD-1644(TD), TRAINER SYSTEM SOFTwARE ENGINEERING
REQUIREMENTS

AUTHOR: NAVAL TRAINING EQUIPMENT CENTER, ORLANDO, FL 32813
DOC DATE: 15 JAN 1982
SOURCE:
ABSTRACT: The purpose of this standard is to establish uniform require-

ments for the development and documentation of trainer system
software. These requirements shall apply to trainer system
software (including firmware and microcode) which is devel-
oped either alone or as a portion of a trainer system or sub-
system development. Only unmodified computer vendor commuer-
cial software will be exempt from the development and docu-
mentation requirements of this standard.

58) TITLE: SOFNARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND
EQUIPMENT CERTIFICATION

AUTHOR: SPECIAL COMMITTEE OF RTCA
DOC DATE: NOVEMBER 1981
SOURCE: RADIO TECHNICAL COMMISSION FOR AERONAUTICS (RTCA)
ABSTRACT:

B -26

-.-.--



ANNOTATED BIBLIOGRAPHY

..?'

59) TITLE: THE MEASUREMENT AND MANAGEMENT OF SOFTWARE RELIABILITY
AUTHOR: JOHN D. MUSA
DOC DATE: SEPTEMBER 1980
SOORCE: PROCEEDINGS OF THE IEEE
ABSTRACT: The theme of this paper is the field of software reliability

measurement and its applications. Needs for and potential
uses of software reliability measurement are discussed. Soft-
ware reliability and hardware reliability are compared, and
some basic software reliability concepts are outlined. A
brief summary of the major steps in the history and evolution
of the field is presented. Two of the leading software reli-
ability models are described in some detail. The topics of
combinations of software (and hardware) components and avail-
ability are discussed briefly. The paper concludes with an
analysis of the current state of the art and a description of
further research needs.

60) TITLE: VALIDITY OF EXECUTION-TIME THEORY OF SOFTWARE RELIABILITY

AUTHOR: JOHN D. MUSA
DOC DATE: AUGUST 1979
SOURCE: IEEE TRANSACTIONS ON RELIABILITY
ABSTRACT: This paper investigates the validity of the execution-time

theory of software reliability. The theory is outlined, along
with appropriate background, definitions, assumptions, and
mathematical relationships. Both the execution time and cal-
endar time component are described. The important assumptions
are discussed. Actual data are used to test the validity of
most of the assumptions. Model and actual behavior are com-
pared. The development projects and operational computation
center software from which the data have been obtained are
characterized to give the reader some basis for judging the "
breadth of applicability of the concepts.

61) TITLE: OPERATIONS RESEARCH AND RELIABILITY
AUTHOR: DANIEL GROUCHKO (EDITOR) .

DOC DATE: JUNE/JULY 1969
SOICE: PROCEEDINGS OF A NATO CONFERENCE
ABSTRACT:

B -27.'



ANNOTATED BIBLIOGRAPHY

62) TITLE: RELIABILITY MODEL DEMONSTRATION STUDY, VOLUMES I & II
AUTHOR: J. E. ANGUS, J. B. BOWEN, S. J. VANDENBERG(HUGHES AIRCRAFT)
DOC DATE: AUGUST 1983
SOURCE: ROME AIR DEVELOPMENT CENTER
ABSTRACT: This report contains the results of a study to determine the

use and applicability to Air Force software acquisition man-
agers of six quantitative software reliability models to a
major command, control, communications, and intelligence CCCI
system. The scope of the study included the collection of
software error data from an ongoing CCCI project, fitting
six software reliability models to the data, analyzing the
predictions provided by the models, and developing conclu-
sions, recommendations, and guidelines for software acquisi-
tion managers .pertaining to the use and applicability of the
models.

63) TITLE: COMMENTS ON HIGHLY RELIABLE SOFTWARE FOR AVIONICS
APPLICATIONS

AUTHOR: JACOB T. SCHWARTZ
DOC DATE: SEPTEMBER 23, 1981
SOURCE: INSTITUTE FOR COMPUTER APPLICATION IN SCIENCE AND ENGINEERING
ABSTRACT: The differences between hardware and software reliability for

digital systems are discussed in the context of applications
where a failure may result in the loss of human life. In par-
ticular, it is argued that techniques for guaranteeing relia-
bility for hardware are not necessarily appropriate for soft-
ware. The potential of a variety of approaches for assuring
software reliability is discussed.

B - 28



ANNOTATED BIBLIOGRAPHY

64) TITLE: FITTING AN EXPONENTIAL SOFTWARE MODEL TO FIELD FAILURE DATA
AUTHOR: R. W. SCHMIDT
DOC DATE: MAY 1982
SOURCE: OFFICE OF NAVAL RESEARCH
ABSTRACT: The quantitative prediction and measurement of software reli-

ability is of vital importance in the development of high
quality cost effective software. Many software reliability
models have been postulated in the literature, however few
have been applied to field data. A model based upon the as-
sumption that the failure rate of the software is propor-
tional to the number of residual software errors leads to a
constant failure rate and an exponential reliability func-
tion. The model contains two constants: the proportionality
constant K and the initial (total) number of errors Et.
The constants K and Et can be estimated during early design
by comparison of the present project with historical data.
During the integration test phase, a more accurate determi-
nation of the model parameters can be obtained by using sim-
ulator test data as if it were operational failure data. The
simulator data is collected at two different points in the
integration test phase and the two parameters can be deter-
mined from moment estimator formulas. The more powerful max-
imum likelihood method can also be employed to obtain point
and interval estimates. It is also possible to use least
squares methods to obtain parameter estimates which is the
simplest method and provides insight into the analysis of the
data.
This report utilizes a set of software development and field
data taken by John D. Musa as a vehicle to study the ease of
calculation and the correspondence of the three methods of
parameter estimation. The sensitivity of the reliability pre-
dictions to parameter changes are studied and compared with
field results.
The results show if data is carefully collected, software
reliability models are practical and yield useful results.
These can serve as one measure to help in choosing among
competitive designs and as a gauge of when to terminate the
integration test phase.

S 65) TITLE: IEEE COMPUTER SOCIETY SOF7WARE RELIABILITY MEASUrREM1
WORKING GROUP

AUTHOR:

DOC DATE: AUGUST 1982
SOURCE:
ABSTRACT:

B - 29

" ----"4 ] -< ]" ]:? --. ' ]i- -. .] -<- :' [ :' " < S ',< "[ : ]< ' ]: ]< . < - [,. -i -]-i .< - -. < - [. -



ANNOTATED BIBLIOGRAPHY

66) TITLE: SOFTWARE ACQUISITION MANAGEMENT GUIDEBOOK: SOFTWARE QUALITY
ASSURANCE

AUTHOR: GEORGE NEIL AND HARVEY I. GOLD
DOC DATE: AUGUST 1977
SOURCE: ELECTRONICS SYSTEMS DIVISION
ABSTRACT: This report is one of a series of Software Acquisition Man-

agement Guidebooks which provide information and guidance for
ESD Program Office personnel who are charged with planning
and managing the acquisition of command, control, and commu-
nications system software procured under Air Force 800 series
regulations and related software acquisition management con-•i .cepts. It provides guidance for establishing and imple-

menting a software quality assurance program which it dis-
cusses in terms of Program Office quality assurance require-
ments (as defined by AFR 74-1 and ESDM 74-1), contractor

* quality assurance requirements as defined by MIL-S-52779(AD),
and software quality assurance at ESD. Special attention is
given to: (1) the relationship of quality assurance to other
acquisition management disciplines; (2) the integration of
quality assurance requirements into the system; (4) monitor-
ing the implementation of quality assurance requirements; and
(5) common problems and proposed solutions.

67) TITLE: JOINT LOGISTICS COMMANDERS (JLC)
AUTHOR: MAJ. LARRY A. FRY; AIR FORCE; ANDREWS AFB
DOC DATE: 1981
SOURCE: 1981 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: In April 1979, the Computer Software Management (CSM) Sub-

group, working under the auspices of the Joint Logistics
Commanders (JLC) Joint Policy Coordinating Group for Computer
Resource Management (JPCG-CRM), conducted a workshop to re-
view current DOD policy, procedures and standards in the area
of software management. Panels were organized to review the
areas of software acquisition and development standards,

.' software documentation, standards for software quality and
software acceptance criteria. The findings and recommen-
dations from this workshop are summarized in this paper.

""< I
B-30

"V.L

-, , - , "-'. . . .L . . . . . . .!



ANNOT~ATED B IBLIOGRAPHY

68) TITLE: EVALUATING AUTOMATABLE MEASURES OF SOFIWARE DEVELOPMENT-
AUTHOR: VICTOR R. BASILI AND ROBERT W. REITER, JR
DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: There is a need for distinguishing a set of useful automat-

able measures of the software development process and pro-
duct. Measures are considered useful if they are sensitive to
externally observable differences in development environments
and their relative values correspond to some intuition re-
garding these characteristic differences. Such measures could
provide an objective quantitative foundation for constructing
quality assurance standards and for calibrating mathematical
models of software reliability and resource estimation. This
paper presents a set of automatable measures that were imple-
mented, evaluated in a controlled experiment, and found to

* satisfy these usefulness criteria. The measures include com-
puter job steps, program changes, program size, and cyclo-
matic complexity.

69) TITLE: A CRITIQUE OF THE JELINSKI-MORANDA MODEL FOR SOFTWARE
RELIABILITY

AUTHOR: BEV LITTLEWO0D, THE GEORGE WASHINGTON UNIVERSITY; WASHINGTON
D.C. AND THE CITY UNIVERSITY; LONDON

DOC DATE: 1981
SOURCE: 1981 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: The paper discusses some problems associated with an early

model for software reliability growth during debugging, first
proposed by Jelinski and Moranda. It is suggested that the
assumption of all faults contributing equally to the overall
failure rate is overly naive and can be improved. Necessary
and sufficient conditions are given for ML estimates of the
model parameters to be finite. It is shown that there is
always a finite probability that N - Since other authors
have shown from simulated data that ML estimates can be mis-
leading even when finite, it is important that goodness-of-
fit tests are performed. Such a test on one set of data
shows the model to perform badly; an alternative model due to
Littlewood and Verrall is better.

B- 31

. ,. - . ,



ANNOTATED BIBLIOGRAPHY

70) TITLE: THE MANY FACETS OF QUANTITATIVE ASSESSMENT OF SOFTWARE
RELIABILITY

AUTHOR: J.-C. RAULT, IRIA - INSTITUT DE RECHERCHE d1INFORMATIQUE ET
d'AUTOMATIQUE DOMAINE DE VOLUCEAU , FRANCE

DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: After recalling the prevailing techniques and procedures for

attaining reliable and high quality software (qualitative,
preventive, fault-avoidance, fault-tolerance), approaches to
quantitative assessing software reliability are considered.
Two main types of approach are distinguished and surveyed:
extension of hardware-based techniques (application of con-
ventional reliability theory, extension of hardware test ef-
ficiency measurement to software) and techniques specific to

-,-. software (correlating structural, textual and behavioral com-
plexity measures to some measure of reliability). Scope and
domains of application of these approaches are delineated.
Then, a comprehensive scheme for assessing software relia-
bility that attempts to reconcile the various reliability
models surveyed is proposed. As a conclusion, one discusses
a possible incorporation of the proposed scheme into current
programming stations with a view to extending their capabil-
ities in both software project management and software qual-
ity assurance.

* 71) TITLE: TESTING FOR SOFTWARE RELIABILITY
AUTHOR: J. R. BROWN AND M. LIPOW; TRW SYSTEMS
DOC DATE:
SOURCE:
ABSTRACT: This paper presents a formulation of a novel methodology for

evaluation of testing in support of operational reliability
assessment and prediction. The methodology features an incre-

" mental evaluation of the representativeness of a set of de-
velopment and validation test cases together with definition
of additional test cases to enhance those qualities. Several
techniques which permit specification of expected operational
usage are described. An experimental application of the
techniques to a small program is provided as an illustration
of the proposed use of the methodology for operational soft-
ware reliability estimation.

A U
B -32 ]

- . -. . ... . .



9p_

ANNOTATED BIBLIOGRAPHY

72) TITLE: DESIGN OF SELF-CHECKING SOFIWARE
AUTHOR: S. S. YAU AND R. C. CHEUNG

DOC DATE:
SOURCE: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RELIABLE SOFTWARE

ABSTRACT: This paper discussed different techniques for constructing a
piece of self-checking software for systems where ultra-reli-
ability is required. Self-checking software can be designed
to detect software errors, to locate and to stop the propa-
gation of software errors and to verify the integrity of the
system.

73) TITLE: FAULT-TOLERANT SOFTWARE
AUTHOR: HERBERT HECHT, SENIOR MEMBER IEEE; SOHAR INC., LOS ANGELES J*

DOC DATE: AUGUST 1979
SOURCE: IEEE TRANSACTIONS ON RELIABILITY
ABSTRACT: Limitations in the current capabilities for verifying pro-

grams by formal proof or by exhaustive testing have led to
the investigation of fault-tolerance techniques for applica-
tions where the consequence of failure is particularly se-
vere. Two current approaches, N-version programming and the

recovery block, are described. A critical feature in the

latter is the acceptance test, and a number of useful tech-
niques for constructing these are presented. A system reli-
ability model for the recovery block is Introduced, and con-
clusion derived from this model that affect the design of
fault-tolerant software are discussed.

74) TITLE: ORGANIZING FOR SUCCESSFUL SOFTWARE DEVELOPMENT
AUTHOR: EDMUND B. DALY
DOC DATE: DECEMBER 1979
SOU RCE: DATAMATION
ABSTRACT: Software development requires competent technologists, compe-

tent managers and an effective organization structure. A good
organization structure is meaningless without a well-defined
design methodology and without effective management prac-
tices. The organization structure brings together technol-
ogists and management, but the structure must work within the

culture of the organization.

B -33
-A.

-, : I |



ANN(YATED BIBLIOGRAPHY .

75) TITLE: MODIFIED MUSA THEORETIC SOFTWARE RELIABILITY
AUTHOR: H. B. CHENOWETH, PH.D.; WESTINGHOUSE ELECTRIC CORP.
DOC DATE: 1981
SOURCE: 1981 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: Presented in this paper is an analysis of the underlying as-

.4 sumptions and constraints relative to the Muisa software exe-
cution time reliability model. The theory was examined to
validate the underlying basic assumptions with the view of
adding greater generality. The resulting modifications in the
model theoretic analysis technique and parameter definition
that result from a particular subclass of programs are ex--
plained in terms of their contribution to the predicted MTFand the expected time to complete testing.

76) TITLE: REPORT ON THE DELIBERATIONS OF THE SOFTWARE RELIABILITY
WORKING GROUP

AUTHOR: M. LIPOW, CHAIRMAN; TRW SYSTEMS AND ENERGY GROUP, REDONDO
BEACH, CAEEE

DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: Recommendations that software and hardware reliability be

considered in a systems context were presented to the Working
Group. Similarities and differences of hardware and software
characteristics as elements of reliability models and as they
shape terminology were suggested as the main topics to be
discussed.
The Working Group's primary recommendations were that a new
IEEE Task Group be established to formulate and support soft--
ware reliability data collection methodology, that the IEEE
Terminology Task Group be supported, and that several ex-
isting software reliability models are usable, and should be

, .~applied.

77) TITLE: A SOFTARE EVALUATION: RESULTS AND RECOMMENDATIONS
AUTHOR: JAN M. HOWELL; U.S. AIR FORCE; EDWARDS AFB

. DOC DATE: 1983
SOUKCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: This paper discusses a software quality evaluation conducted

'on a major U.S. Air Force avionics system. The originally
planned effort was limited to a hardware evaluation but was
expanded to include software when the impact of software be-
came apparent. The paper presents some results obtained,
discusses pattern software problems encountered and suggests
ways to avoid those repetitive difficulties.

4 B- 34

............ ............ ..................... .
I ',- , " - ,-% ',." - ..-' ,''" -" ." " -.- " ," " ..- " ,'. .. " ." ' -.. ' -'. .- " ," -_ '.- -'. '...- '.- .Z, '.. ¢. ,.e .e_ ,,.- .'*..-



ANNOTATED BIBLIOGRAPHY

78) TITLE: IMPLEMENTATION AND MEASURABLE OUTPUT OF SOFIWARE QUALITY
ASSURANCE

AUTHOR: P. CASTIGLIONE, W. THOMPSON; GENERAL ELECTRIC CO.,BINGHAMTON
DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUMd
ABSTRACT: This paper describes the Software Quality Assurance (SQA)

controls and activities for all elements of the software de-
sign, development, and manufacturing process used at General
Electric Aerospace Control Systems Department.

79) TITLE: WORKING GROUP ON SOFIWARE COST
AUTHOR: C. E. WALSM0N, IBM, FEDERAL SYSTEMS DIVISION, BETHESDA, MD
DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: This paper summarizes and highlights the discussions that

took place in the working group on software cost. A number of
issues were identified relating to the state of the art in
software cost estimation and to its implications for devel-
oping and using software cost models. -

80) TITLE: SOFTWARE SAFETY: A DEFINITION AND SOME PRELIMINARY THOUGHTS

AUTHOR: NANCY G. LEVESON; DEPT. OF INFORMATION AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA; IRVINE, CA 92717

DOC DATE: APRIL 1981
SOURCE: HUGHES AIRCRAFT CO.
ABSTRACT: Software safety is the subject of a research project in its

initial stages at the University of California Irvine. This
research deals with critical real-time software where the
cost of an error is high, e.g. human life. In this paper
software techniques having a bearing on safety are described
and evaluated. Initial definitions of software safety con-

cepts are presented along with some preliminary thoughts and

research questions.

B- 35 -

,,> ' .',t .e2 '.j .$. "i,..' .'.',''2 .'.'':e;, .-'z ."'•.-,' " ....,i .. .. .. .. .•/ ..z " .. ..... z.



ANNOTATED BIBLIOGRAPHY

81) TITLE: THE CURRENT STATE OF SOFIWARE RELIABILITY MODELING
AUTHOR: V. VERMURI; DEPT. OF COMPUTER SCIENCE, STATE UNIVERSITY OF NY

BINGHAITON, NY 13901
DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: The development of reliable software is a complex process.

This complexity stems from its large size, strong human ele-

ment in its design and development and the uncertainties as-

sociated with its operational environment. The problem of
building normative models to characterize software develop-
ment process, in order to predict its reliability, cost,
utility, etc., is therefore an inherently complex process.
The difficulties are further exacerbated by the lack of stan-
dardized practices. Furthermore, the range of validity of
most of the error frequency models is confined to the imme-
diate environment within which they were developed. Their
sensitivity to parameters and test data remains to be tested.
It appears, therefore, that the time is ripe for the develop-
ment of an integrated approach which brings together the con-
cepts such as complexity, reliability, utility, and cost.
Within such a framework, it is possible to find a proper
niche for the current crop of operational, developmental and
maintenance models. Tools and techniques for such an inte-
grated approach are available in the body of knowledge var-
iously known as general systems theory or the theory of mod-
eling of complex systems.

B- 36

'--.. ,

, A



%1 A

ANNOTATED BIBLIOGRAPHY

82) TITLE: EVOLUTION OF QUALITY/ RELIABILITY DUE TO LITIGATION
AUTHOR: RICHARD M. JACOBS, PE, CONSULTANT SERVICES INSTITUTE, INC.,

LIVINGSTON; JOHN MIHALSKY, ED. D., NEW JERSEY INSTITUTE OF
TECHNOLOGY, NEWARK

DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSTUM
ABSTRACT: During the past twelve to fifteen years, manufacturers and

sellers of products have been bombarded with litigation in-
volving their product. During this period some management
groups have recognized that it takes twenty to twenty-five
times more in sales to pay for the cost of a litigation or
claim. This does not count the roughly $10,000 of internal
costs that companies have been experiencing to service their
own litigation staff.
Included in the internal costs of retrieving information are
the following items:

failure reports, inspection records, tests records,
drawings, specifications, operating procedures, organ-
izational charts, patents, every engineering change issued
for the product, every manufacturing change, all purchase
orders, receiving tickets, stockroom records, service
records for the item involved, internal memoranda, engi-
neering note books, log books, calibration records, per-
sonnel records (for those who are associated with the
item involved).

The Quality Control and Reliability Specialist in every phase
of the operation is dirctly involved in the recording of the I
data contained in the documents listed above and in some re-
spect becomes associated with the accuracy and the repeat-
ability of these data. In addition to the litigation re- *

trieval costs, there are now laws passed by various Federal
and State Legislatures to which the companies must comply.
Evidence of this compliance most frequently originates or
passes through the hands of the Quality and Reliability
Specialist.

B 37

.. * . . . . . .. . . . . - ~ - - - -



ANNOTrATED BIBLIOGRAPHY

83) TITLE: PITFALLS OF SOFIWARE QUALITY ASSURANCE MANAGEMENT
AUTHOR: EDDIE F. THOMAS; GENERAL DYNAMICS FORT WORTH DIVISION
DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: This paper will address the pitfalls associated with estab-

lishing and managing a Computer Software Assurance Program
(CSAP). The paper will be based on the experience gained
with the CSAP Program on the General Dynamics F-16 Multi-
national Staged Improvement Program (MSIP). The basic ques-
tion addressed is how a CSAP can be structured so that the
pitfalls can be minimized or avoided and how the productivity
can be improved by directing the CSAP effort to not only sat-
isfy the requirements of MIL-S-52779A but at the same time to '" .

help (rather than hinder) the software development effort.

84) TITLE: PROGRAM CONTROL COMPLEXITY AND PRODUCTIVITY
AUTHOR: J. E. GAFFNEY, JR, IBM, FEDERAL SYSTEMS DIVISION, MANASSAS,

VIRGINIA 22110
DOC DATE: 1979

*SOURCE: IEEE
ABSTRACT: This paper describes two simple measures of Program Control

Complexity and indicates their relationship to Programmer
Productivity. This work is based upon a limited amount of
real program data and is related to the earlier work of
McCabe and Chen.

85) TITLE: AN INDEX OF COMPLEXITY FOR STRUCTURED PROGRAMS
AUTHOR: IRENE L. STORM AND STANLEY PREISER, UNIVAC AND POLYTECHNIC

INSTI UTE OF NEW YORK
DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: An index of complexity for structured programs is introduced.

It provides an "a prior" measure of program complexity, thus
signaling the programmer when che program "probably" exceeds
the limit of "easy" comprehension. In general, the index of
complexity for structured programs is less than the index of
complexity for unstructured programs.

B- 38

' ,. .. . .. , . . . . . . .*.. _. -.. .. . .* . . . . . . .. . . . .. . . ,

: , , .., ., , ,, .- + ,. , ... . . . .. .... . .. . .. .. ... ... . .... -....... ..... . ..-*



- - - - - - - - - - -- - -- -

ANNOTATED BIBLIOGRAPHY

86) TITLE: SWEDISH HARUXARE/SOFIWARE RELIABILITY
. AUTHOR: LEIF KRISTIANSEN; ERICSSON DEFENSE AND SPACE SYSTEMS; MOELNDAL

DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: This paper presents the application of reliability in a de-

fense industry. Section 1 describes significant events in the
reliability area at our company. Section 2 presents Relia-
bility Prediction, Maintainability Analysis and Reliability
Growth used by our company. The last section describes a
method for objective control of software production.

COMMENT:

87) TITLE: HARDqARE/SOF IARE AVAILABILITY FOR A PHONE SYSTEM
AUTHOR: RICHARD PISKAR; ISKRA TELEMATIKA; KRANJ

* DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: The paper predicts the availability of a digital telephone

decentralized system composed of computer controlled switch-
,* . ing modules and duplicated intermodule PCM switches. There

are known hardware failure rates of modules and PCM switches
and estimated software failure rates. The system is repair-
able with different repair rates for modules and PCM
switches. The failure and repair rates are constant, and the
distributions of times to faults are negative exponential.
The problem is to determine the availability of the system.
Markov process model with discrete states and continuous time
is used to determine hardware and software availability. In
steady state the probabilities of each state are derived from
a system of simultaneous equations. Combining the probabil-
ities of the states with the number of subscribers or lines
affected, the analytical expressions for hardware and soft-
ware availabilities of the system are derived. The analytical
expression of general decentralized and distributed system

" availability and average times to fault in dedicated parts of
the system are the results. The hardware/software model is
offering the analytical relation between reliability and pro-
ductivity, or creation of economic value during production
and use of the system.

B- 39

Z., %S- .



ANNOTATED B I BLIOGRAPHY

88) TITLE: COMBINED HAR[WARE AND SOFTWARE AVAILABILITY
AUTHOR: ROBERT D. HAYNES, ARINC RESEARCH CORP., ANNAPOLIS;

WILLIAM E. THOMPSON, COLUMBIA RESEARCH CORP., ARLINGTON
DOC DATE: 1981
SOURCE: 1981 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: This paper presents a Bayesian availability model for combined

hardware and software systems. Such systems are sometimes
called embedded computer systems. The system model presented
assumes that each embedded computer system malfunction can be

- related to one of three sources: (1) hardware, (2) software,

or (3) an unknown source. The procedures presented in this
paper can also serve as the basis for system specifications,
warranty provisions, or other contractual agreements related
to combined hardware and software system availability.

89) TITLE: HARDWARE-SOFTWARE AVAILABILITY: A COST BASED TRADE-OFF STUDY
AUTHOR: AMRIT L. GOEL , SYRACUSE UNIVERSITY, SYRACUSE;

JOPIE B. SOENJOTO, CENTRAL BUREAU OF STATISTICS, JAKARTA
DOC DATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
-ABSTRACT: Software has become a major source of system malfunctions and

a prime contributor to the overall cost of maintaining large
commerical and weapons systems. This paper addresses the pro-
blem of assessing the reliability and availability of such
systems. A cost model is developed to study the trade-off
between the hardware and software subsystems for cases where
such trade-offs are permissible. The basic approach follows

.A the model developed by Goel and Soenjoto

("4

B -40



I,,

-€ - -- ---

90) TITLE: RELIABILITY OF SHUTYTLE MISSION CONTROL CENTER SOFTWARE
AUTHOR: MARTIN L. SHOOMAN, POLYTECHNIC INSTITUTE OF NEW YORK,BROOKLYN

GEORGE RICHESON, NATA, HOUSTON
DOCDATE: 1983
SOURCE: 1983 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: This paper presents the results of a study made of the relia--

bility of software for the Space Shuttle mission Control
Center Data Processing Complex. The ground based software,
which is approximately 1.2 million lines of source code, was
used to simulate the mission prior to flight, for use in
flight controller and astronaut training. During the course
of the simulation, all discrepancies from correct behavior
were reported, and subsequently diagnosed as due to hardware,
software, or operator errors. The model predictions are comn-

* pared with the performance of this software during the first
shuttle flight.

91) TITLE: A GUIDEBOOK FOR SOFTWARE RELIABILITY ASSESSMENT
AUTHOR: ANRIT L. GOEL, SYRACUSE UNIVERSITY
DOC DATE: AUGUST 1983
SOURCE: ROME AIR DEVELOPMENT CENTER, GRIFFISS AFB, NY
ABSTRACT: The purpose of this guidebook is to provide state-of-the-art

information about the selection and use of existing software
reliability models. Towards this objective, we have presented
a brief summary of the available models backed by a detailed
discussion of most of the models in the appendices.
one of the difficulties in choosing a model is to find a
match between the testing environment and a class of models.
To help a user in this process, we have presented a detailed
discussion of most of the assumptions that characterize the
various software reliability models. The process of devel-

, ASoping a model has been explained in detail and illustrated
via numerical examples.

B- 41

SOne of the dfui in choosi a



i-'S

qa

ANNOTATED BIBLI OGRAPHY

" 92) TITLE: COMPLEXITY MEASURES IN AN EVOLVING LARGE SYSTEM
* AUTHOR: G. BENYON-TINKER, DEPT. OF COMPUTING AND CONTROL, IMPERIAL

COLLEGE, LONDON
DOC DATE:
SOOCE:
ABSTRACT: One large (and functionally complicated) program has been

studied in an attempt to find a measure of complexity which
reflects the effort required to understand it. Examination of
the program showed that a major part of the effort was re-
lated to the way in which the component procedures interacted
functionally via the calling hierarchy. This suggested a new
way to measure the complexity. Each of the 13 released ver-
sions of the program was analysed to determine the structure .

*" of the procedure calling hierarchy. The evolution of the
complexity measure obtained indicated a modest increase in
complexity of understanding which was consistent with other
evidence. Procedures also interacted strongly through shar-
ing access to global variables, and a new approach to clas-
sifying the complexity of such interactions is proposed.

93) TITLE: DORMANCY AND POWER ON-OFF CYCLING EFFECTS ON ELECTRONIC
EQUIPMENT AND PART RELIABILITY

AUTHOR: J. A. BAUER, D. F. COIRLL, T. R. GAGNIER, E. W. KIMBALL,
et al, MARTIN MARIETTA AEROSPACE, ORLANDO, FL

DOC DATE: AUGUST 1973
SOURCE: ROME AIR DEVELOPMENT CENTER, GRIFFISS AFB, NY
ABSTRACT: Martin Marietta Aerospace has conducted two 12-monti, pro-

grams. The first was to collect, study, and analyze relia-
bility information and data on dormant military electronic

-' equipment and parts and to develop current dormant failure
rates, factors, and prediction techniques. The second was
to collect, study, and analyze reliability information and
data on military electronic systems subjected to power on-off
cycling, to correlate failure incidence with power on-off
cycling, and to quantify power on-off cycling affects with

V respect to the dormancy and operating states. ..

WO

B - 42

',-. i,'-' .,, ,- - , ,'" .. , -- . - -. ''''' -'"'',.-- - -. ".- -- -.- " " ' " -' -. , - -' ' .- ,' ' ,,.'' - .



ANNOTATED BIBLIOGRAPHY

94) TITLE: ASSESSMENT OF SOFIWARE RELIABILITY
AUTHOR: G. J. SCHICK AND R. W. WOLVERTON, TRWSYSTEMS ENGINEERING AND

INTEGRATION DIVISION, LOS ANGELES AND REDONDO BEACH
DOC DATE: SEPTEMBER 1972
SOURCE:
ABSTRACT: This paper discusses methods for and problems in achieving

reliability of large-scale software systems. Comparative
studies were made of a U.S. Air Force software project, a
NASA software project, and a commercial software project.
Software development and test management procedures which
lead to software reliability are analyzed. The underlying
premise is that software reliability must be designed into
the system from the outset using a systems approach. The
systems approach to achieving software reliability requires
(1) understanding of the total software development and test
life cycle, (2) identification of conventional and extended
conventional test techniques for precision validation testing
of applications programs, and (3) allocation of resources in
a cost-performance-effective manner, in advance, over the
entire development period.

95) TITLE: A DETERMINISTIC MODEL TO PREDICT "ERROR-FREE" STATUS OF COMPLEX
SOFIWARE DEVELOPMENT

AUTHOR: IRWIN NATHAN, SR MEMBER IEEE, XEROX CORPORATION
DOC DATE: 1979
SOURCE: IEEE
ABSTRACT: A top-down model for evaluating software "reliability" is

proposed and tested against seven case histories. The model
is shown to accurately predict when the software can be ex
pected to be reasonably "error-free". The model is based
upon the work of 19th century actuary by the name of Benjamin
Gompertz. The model was then used in a forecasting mode for
an on-going software evaluation.

B -43 71111

"- '-; -'-% ' ' . --''' -- ' ' . 'i . - . ; - L - - i % " i .- -' "- - - - . . ." - .-. " - .- -. - -. - ". '- . -- " .2 ? '7



.9%

ANNO'ATED BIBL[OGRAPHY

96) 'r ITLE: SOF'IWARE RELIABILITY
AUI'HOR: MARTIN L. SHOOMAN, POLYTECHNIC INSTIT'hJE OF NEW YORK;

MYRON LIPOW, TRW, INC., REDONDO BEACH, CA

DOC DATE:

SOURCE:-,
ABSTRACT: A. Basics

terminology
Hardware - Software comparisons
ReLiability as a quality attribute

B. Control of Software Errors
Soiuices of errors

. Prevention and detection of errors
C. Reliability Models and Measurements

Complexity models
* . Empirical, structural, and statistical models

D. Applications and Case Histories
E. Questions and Discussion

97) TITLE: A WORKABLE SOFIWARE QUALITY/RELIABILITY PLAN
AUTHOR: ROBERT H,. DUNN AND RICHARD S. ULLMAN
DOC DATE: 1978
SOURCE: 1978 PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY

SYMPOSIUM
ABSTRACT: The twin problems of the reliability and maintainability of

embedded software are viewed as susceptible to solution by
the disciplines of built-in quality assurance. Several facets
to such an approach are presented. Emphasis is placed on the
use of appropriate techniques and tools, with audits seen as
the principal device for assuring a well-planned and orderly
executed development cycle. The thrust of the paper is to-
ward pragmatic solutions. Thus, the array of techniques and
tools described is restricted to those that are readily a-
vailable and have previously met with success in the develop-
ment of embedded software.

V.<

8-44 ,

U%

y .. . .. . . .i.] " ,--LI,



ANNOTATED BIBLIOGRAPHY

- ~ 98) TITLE: QUANTITATIVE SOFTWARE COMPLEXITY MODELS: A PANEL SUMMARY - -

AUTHOR: VICTOR R. BASILI, DEPT OF COMPUTER SCIENCE, UNIVERSITY OF
MARYLAND

DOC DATE: 1979

SOURCE: IEEE
ABSTRACT: Several participants at the conference formed a panel on

software complexity measures. The following topics were
discussed:

* Defining A Software Complexity Measure
Developing A Software Measure

• Using A Software Measure
. The Effect of Software Metrics

99) TITLE: AIRBORNE SYSTEMS SOFIWARE ACQUISITION ENGINEERING GUIDEBOOK
FOR QUALITY ASSURANCE.

AUTHOR: M. LIPOW, TRW DEFENSE AND SPACE SYSTEMS GROUP
DOC-DATE: NOVEMBER 1977
SOURCE: AERONAUTICAL SYSTEMS DIVISION, WRIGHT PATTERSON AFB, OHIO
ABSTRACT: This report is one of a series of guidebooks which provide

guidance for ASD and SAMSO Program Office and engineering
personnel in the acquisition management and engineering of
Airborne Systems software procured under Air Force 800 series
regulations. It provides information that will help personnel
plan, specify, and monitor quality assurance activities in
connection with the acquisition of Computer Program Configu-
ration Items (CPCI's) for Airborne Systems.

100) TITLE: ELEMENTS OF SOFTWARE SCIENCE
AUTHOR: MAURICE H. HALSTEAD
DOC DATE: 1977
SOURCE:
ABSTRACT: This book contains the first systematic summarization of a

branch of experimental and theoretical science dealing with
the human preparation of computer programs and other types of
written material. Application of the classical methods of the
natural sciences demonstrates that even such relatively in-
tangible objects as written abstracts and computer programs
are governed by natural laws, both in their preparation and
in their ultimate form.
The work underlying each chapter of this monograph is firmly
based on the methods and principles of classical experimental
science. Even so, the results in this area, or more specif-
ically, the concept that significant quantitative results
are attainable in such an area, are sufficiently counter-
intuitive as to appear almost weird.

B - 45

'9%



ANNOTATED BIBLIOGRAPHY

1, 101) TITLE: WHEN AND HOW TO USE A SOFIWARE RELIABILITY MODEL

AUTHOR: AMRIT L. GOEL, VICIOR R. BASILI, AND PETER M. VALDES
DOC DATE: DECEMBER 1982
SOURCE: GODDARD SPACE FLIGHT CENTER
ABSTRACT: Many analytical models were proposed during the last decade

for software reliability assessment. These models served a
useful purpose in identifying the need for an objective ap-
proach to determining the quality of a software system as it
goes through various stages of development. However, by and
large, these models have not been as widely and convincingly
used as was expected.
In this paper we attempt to identify the causes of this state
of affairs and suggest some remedial actions. For example, we
feel that very often the models are used without a clear un-

IV derstanding of their underlying assumptions and limitations.
Also, there seems to be some misunderstanding about the in-
terpretations of model inputs and outputs. To overcome some
of these difficulties, we provide a classification of the
available models and suggest which types of models are ap-
plicable in a given phase of the software development cycle.

102) TITLE: GUIDE FOR MANAGING NONDELIVERABLE COMPUTER RESOURCES
AUTHOR: MAJ. GEORGE W. TREVER, AFCMD/EPER, KIRKLAND AFB
DOC DATE: 24 JAN 1984
SOURCE: RECEIVED THROUGH NSIA
ABSTRACT: (OBJECTIVES) This guide was prepared to assist managers

structure and understand policies and procedures in the man-
agement of nondeliverable computer resources (NDCR). It is
the intent of this guide to capture the basic management
methods and lessons learned attributed to deliverable embed-
ded computer systems and translate them into management terms
appropriate for NDCR.

103) TITLE: METHODOLOGY FOR SOFINARE AND SYSTEM RELIABILITY PREDICTION
PHASE II INTERIM REPORT

ALITHOR: J. McCALL, et al.
DOCDATE: MARCH 1985
SOURCE: RADC F30602-83-C-0118
ABSTRACT: The purpose of this report is to describe the interim results of

a research and development effort to develop a methodology for
predicting and estimating software reliability. This report

V represents interim findings during Phase II of the project. This
effort was performed under Contract Number F30602-83-C-0118 for
the U.S. Air Force Rome Air Development Center (RADC).

B -46

'A%
4....

M- A J



APPENDIX C

PILOT SURVEY FORM & INSTRUCTIONS

C-



LEGEND: A. SW Specification Errors RATING: (blank) No Opinion
B. SW Design Errors No Correlation
C. SW Coding Errors L Low Correlation

"- D. SW Interface Problems M Medium Correlation
E. HW Interface Problems H High Correlation
F. Human Interface Problemsr ,.G. Capacity Problems

.1 Sys. Rel 1-------
FACI4OR/CHARACTRI STIC/'rECHNIQUE ISmpact A B C D E F G

OPERATIONAL REQUIREMENTS _ _

Predominantly Control ...___

Predominantly Computational ___- -

Predominantly Input/Output -- --

Predominantly Real-Time _______

Predominantly Interactive ___I

ENVIRONMENTAL REQUIREMENTS

Number of Hardware Interfaces_

Number of Software Interfaces

Number of Human Interfaces . . .._-.

SIZE CONSIDERATIONS ."

Number of Functions Performed

% Overall Program Size _

-,, Number of Compilation Units

Maximum size per unit _"

COMPLEXITY CONSIDERATIONS

Number of Entries and ExitsI

Number of Control Variables

Use of Single-Function Modules _______

Number of Modules _______

Maximum Module Size

Hierarchical Control between Module ___

Logical Coupling between Modules i

SData Coupling between Modules

C- 2



LEGEND: A. SW Specification Errors RATING: (blank) No Opinion
B. SW Design Errors 0 No Correlation
C. SW Codinq Errors L Low Correlation
D. SW Interface Problems M Medium Correlation
E. HW Interface Problems H High Correlation
F. Human Interface Problems

V'- G. Capacity Problems

FACIOR/CHARACTERISTIC/ECHNIQUE Iac A B C D E F G

ORGANIZATIONAL CONSIDERATIONS

Separate Design and Coding __I_. ..

Independent Test Organization _--1

Independent Quality Assurance ___

*~i Independent Configuration Control . ...

Independent Verification/Validation

Progranming Team Structure

Educational Level of Team Members . ....-... . . '

Experience Level of Team Members ... ..__

METHODS USED ___'__

Definition/Enforcement of Standards _ _

Use of High Order Language (HOL) ____

Formal Reviews (PDR,CDR,etc)

Frequent Walkthroughs . ....__

Top-Down & Structured Approaches . .. ..__

Unit Development Folders . . . .

Software Development Library . ....._

Formal Change & Error Reporting -_._

Progress & Status Reporting _ _

DES IG APPROACH --__

Modular Construction Dein,__

Structured Design____

Structured Code _ _

C- 3

a%
C- -,

2..2 %[ ~... °°.° % .....-. ...... o........ 2-. ... . ,[•° - ........-......-...-.. °.. .-.- ° .



LEGEND: A. SW Specification Errors RATING: (blank) No Opinion
B. SW Design Errors 0 No Correlation
C. SW Coding Errors L Low Correlation
D. SW Interface Problems M medium Correlation
E. 1 W Interface Problems H High Correlation
F. Human Interface Problems ;z:+
G. Capacity Problems

FACTOR/CHARACTERISTIC/TECHNIQUE A SysB ReC

TOOLS USED _

Flow Charts____

Structure Charts ,______

Decision Tables _______

| H I P O C h a r t s . ...__ _ _

DOCUMENTATION ______

System Requirements Spec __ - - --_

Software Requirements Spec --_. . ..

Interface Design Spec _ __ l

Software Design Spec -- .._

Source Listings

Test Plans, Procedures & Reports

S/W Development Plan -_.. .._

S/W Quality Assurance Plan ..._

S/W Configuration Management Plan . ._..__

Requirements Traceability Matrix . .-_-,.

Version Description Document

Software Discrepancy Reports -.

c- 4

, C - 4 , ..



LEGEND: A. SW Specification Errors RATING: (blank) No Opinion
B. SW Design Errors 0 No Correlation
C. SW Coding Errors L Low Correlation
D. SW Interface Problems M Medium Correlation
E. HW Interface Problems H High Correlation
F. Human Interface Problems
G. Capacity Problems

FACTOR/CHARACTERISTIC/EC2iNIQUE JImpac A B C D E F G

DUTY CYCLE

Constant Mission Usage

Periodic Mission Usage __"

Infrequent Mission Usage _

i --. ENVIRONMENT

variability of Hardware

Training Level of Operators i

Variability of Input Data . . . ..._

Variability of Outputs . . ...__

Degree of Human Interaction

NON-OPERATIONAL USAGE

Training Exercises ____

Periodic Self Test _ _

Built-in Diagnostics __-

MODIFICATION / ERROR CORRECTION

Performed in the Field "___

Performed at Depot _-_

Performed at Factory ___

C-5

6 ,, :t , .t,- .- .- ,:.:... .:.:,:.t-..:.:-... ---- :..,> -- : ...- ,.,-,- ,-...-.... .- ,-...,> --,--- ,----.- ----



LEGEND: A. SW Specification Errors RATING: (blank) No Opinion
B. SW Dsgn Errors 0 No Correlation
C. SW Coding Errors L Low Correlation
D. SW Interfrace Problems 1' Medium Correlation -

E. HW Interface Problems H High Correlation
F. Human Interface Problems
G. Capacity Problems

Sy.Rell

FACTOR/CHARACTERISTIC/ECHNIQJE Imat A B C D E F G

QUALITATIVE CHARACTERISTICS____

Correctness____

Validity____

Generality____

Testability____

* ~Efficiency / Economy____

* Resilience (Robustness)____

Useability____

Fault Tolerance

Clarity

Readability____

Maintainability____

Modifiability____

Fleyibility____

Portability____

Reusability____

Interoperability____

OTHER (List as necessary)____

c- 6

k V' .



* * * I N S T R U C T 1 0 N S ***"-•

The ultimate objective of this effort is to develop characterization tech-
niques for predicting TOTAL SYSTEM RELIABILITY BASED ON MISSION OR OPERATING -.

TIME. The techniques must include the combined effects of BOTH HARDWARE AND
SOFTWARE as well as the ENVIRONMET in which the system operates. The purpose
of this initial survey is to identify those factors and characteristics which
affect the SOFTWARE component of the overall system reliability. Specifically,
the survey addresses:

SYSTEM SOFIAARE RELIABILITY - The probability that the required
software will perform its intended functions for the prescribed
mission(s) and time period(s) in the specified operating env-
ironment, without causing system outage or failure.

It should be noted that the above definition does not specifically address
"qualities" of the software other than its ability to perform as specified
without causing overall system outage. For example, it is possible for very
inefficient software to be very reliable. The intent of the survey is to cor-
relate qualitative and quantitative factors. THE RATING THAT YOU ARE ASKED TO
PROVIDE SHOULD BE BASED ON THE FACTOR'S RELATIONSHIP TO RELIABILITY, NOT ON
ITS IMPORTANCE TO NON-OPERATIONAL QUALITIES.

Horizontally, the survey includes an overall category and several groupings of
categories which are typically used to record error content of computer pro-
grams. In the case of the error categories, considerable amount of QUANTI-
TATIVE data is available from past projects. Quantifying the overall system
reliability is the goal of this study.

Vertically, the survey includes a mixed list of intrinsic factors, design and
development methodologies, techniques and operational characteristics which -

are generally well covered QUALITATIVELY in the literature.

You are asked to relate the rows and the columns by marking those blocks where
you feel there is a cause/effect relationship indicating the degree of cor-
relation by using the codes provided. It should be noted that some of the
vertical entries such as "structured design", are generally assumed to have a
positive effect on reliability by reducing design errors. Others such as
"predominately real-time" are thought to decrease reliability by increasing
complexity. In this survey, you are not asked to analyze the type of cor-
relation, but simply indicate the degree of correlation.

Although this survey will not provide quantitative effects of the qualitative
factors, it is expected that it will indicate a strong relationship between
specific factors and specific error types which in turn, can be related to
total error content of a program. This total error content can then be com-
bined with the operational "duty cycling" of the program to yield a quanti-
tative prediction of its reliability.

Definitions which are unique or special to this survey are presented herein.
A general glossary of software terms and definitions is included separately.

C- 7



r:. " 1 . ?W .wr.rv' t rr rw r.:-wr-r-.- . .

S P E AL LE E M I N I -.OGY

In order to make this survey as concise as possiloe and to insure consistent
interpretation of the terminology used, the following definitions are pre-
sented:

SYSTEM SOFIWARE RELIABILITY The probability that the requited soft.waLe will ]
perform its intended functions for the prescribed mission(s) and time per-

," iod(s) in the specified operating environment, without causing system outage
or failure.

SW SPECIFICATiON ERRORS - These include all errors resulting from missing,
incorrect or misunderstood requirements. Include in this category %ny problels
associated with the .,oimtiniration of requirements between the co)ntractor and
the developer.

SW DESIGN ERRORS - These are errors which occur in the logical implementation
of the required function. Include in this category all errors where a required
function is not included, not invoked, not checked, not complete or does not

0 produce correct results due to logical construction.

SW CODING ERRORS - These are computational or calculation errors. Included
are: errors of omission such as unitialized variables; mathematical errors
such as incorrect expressions, conversion and truncation errors; and program-
ming errors such as improper use of indices, variables and overlays. Since,
this survey is addressed to operational reliability, DO NOT INCLUDE SYNTAX
ERROPS that would be eliminated prior to operation.

SW INTERFACE PROBLEMS - This category addresses all errors which occur between
software components of the system such as when one program unit fails to call,
('alls in the wrong sequence, or otherwise improperly calls another program
,mit. It also includes all errors resulting from the improper sharing or
passing of data and/or control variables between program units. Examples

" include: passing wrong arguments, mismatched scale factors, missing arguments,
,tc.

HW IWERFACE PROBLEMS - This category includes all errors which result in loss
of data or untimely exchange of data between system hardware and embedded
software. Examples include situations where buffers become saturated or com-

- -[.Lutation cycles exceed their timing allocations. Also included are errors
_,.iused by improper data exchange between system hardware and embedded soft-
ware. Examples include: missing data, incorrect data, mismatched scales, etc.

HUMAN INTERFACE PROBLEMS - This category includes all operator errors that are
not corrected or compensated for by the computer software. Examples include
the acceptance of improper cormnands and data and the rejection of proper in-
puts. Also included are output errors which result in human interface problems C.

, such as missing output, incorrect output, ambiious output, rtc.

C - 8

,. . . -..



CAPACITY PROBLEMS - This category includes all errors where the system per-

forms all of its operational tasks but not within its required timing con--
straints or only performs them on a subset of its intended input domain, i.e.,

there are situations where it doesn't work due to the quantity or content of

'* its tasks. For example, buffers that become saturated during periods of high

activity.

2--.-.

...

-~~~ 
... . ..



APPENDIX D

PILOT SURYEY R~ESULTS

D-1

7. lp-. -



Thirty surveys were distributed and 23 were returned. Each row of the survey
represented a software factor or characteristic which affects system relia-
bility. The first column of the survey was entitled System Reliability Impact,
and the remaining columns represented the following error categories:

A: SW Specification Errors

B: SW Design Errors

C: SW Coding Errors
D: SW Interface Problems
E: HW Interface Problems
F: Human Interface Problems

G: Capacity Problems

The participants were asked to assign a rating to each block indicating the
degree of correlation between the factors and the error categories. If a par-

ticipant had no opinion, the block was left blank.

Each of the four possible ratings was given a numerical value as shown below.

Numerical
Rating Value

H (High Correlation) 9.0

M (Medium Correlation) 5.0

L (Low Correlation) 1.0

0 (No Correlation) 0.0

A blank meant that the respondee had no opinion on that particular item and

so blanks were ignored in the analysis. Using the numerical values for the
ratings, overall averages were calculated for each block of the survey; i.e.,
for each row and column combination. Individual averages for each row were

computed as well as overall row averages. Although numerical averages were
computed for the qualitative and other factors listed on the last page of the
survey, they were not included in the overall rankings.

Table D-1 shows the top twenty software factors ranked in decreasing order of
*. overall row average. It is obvious that specifications, application types and

design methodologies were determined to be the leading influences on system
reliability. Table D-2 gives the overall average, the number of responses and
the standard deviation for each block of the survey.

D- 2

! ~-



TABLE D-1. TWENTY HIGHEST RANKED SOFTIWARE ATTRIBUTES / FACTORS

Row Average Attribute / Factor

7.91 Interface Design Spec

7.62 Software Requirements Spec -

7.41 System Requirements Spec

7.40 Frequent Walkthroughs

7.14 Software Design Spec

6.83 Definition/Enforcement of Standards

6.46 Predominantly Real-Time

6.40 Experience Level of Team Members

-- 6.38 Predominantly Control

6.31 Top-Down & Structured Approaches

6.24 Test Plans, Procedures & Reports

6.21 Predominantly Interactive

6.13 Formal Reviews (PDR,CDR,etc)

6.12 Requirements Traceability Matrix

6.10 Modular Construction

6.05 Performed in the Field

5.98 Structured Design

5.91 Constant Mission Usage

5.87 Number of Software Interfaces

5.83 S/W Development Plan

-I.I

D- 3

C""



1j

TABLE [)-2. STATISTICAL RESUJLTS OF PriLT SJ8Vif;.Y

Sys. Rel.
SW FACIORiCHARACTERISTIC Impact A B C D E F G

Predominantly Control Average 6.9 7.7 7.0 5.0 7.0 5.9 6.3 4.7
No. Resp. 19. t8. 18. i5. 14. 15. 12. 14.
Std. Dev. 2.8 2.4 3.1 3.7 3.0 3.9 3.1 3.9

Predominantly Computational Average 4.1 5.9 6.9 5.6 4.6 3.3 1.7 3.3
No. Resp. 18. 16. 17. 13. 12. 12. 13. 13.
Std. Dev. 3.0 3.5 2.5 3.6 3.3 3.8 2.5 3.6

Pcedominantly Input/Output Average 5.2 7.0 6.3 5.3 6.5 6.7 3.6 4.8
No. Resp. 18. 16. 15. 14. 15. 16. 13. 13.
Std. Dev. 3.2 3.3 3.3 3.3 3.1 2.7 3.2 3.1

Predominantly Real-Time Average 7.0 6.3 6.9 5.9 6.7 6.2 4.9 7.1
No. Resp. 20. 15. 15. 13. 14. 15. 11. 15.
Std. Dev. 2.8 3.4 3.0 3.7 3.0 3.5 3.7 2.6

Predominantly interactive Average 6.1 7.5 6.8 5.3 6.1 5.1 7.9 4.2
No. Resp. 18. 13. 13. 13. 15. 14. 18. 12.
Std. Dev. 3.0 2.6 3.1 3.4 3.2 3.9 2.7 3.1

Nunber of Rardware Interfaces Average 6.5 4.9 5.4 3.2 5.5 8.6 3.5 4.2
No. Resp. 21. 14. 16. 14. 13. 19. 15. 14.
Std. Dev. 3.0 3.6 3.0 3.1 3.7 1.3 3.1 3.4

Numtber of Software Interfaces Average 7.7 7.4 7.4 5.0 8.6 3.0 2.6 3.3

No. Resp. 21. 15. 15. 14. 19. 14. 14. 14.
Std. Dev. 2.3 2.5 2.5 3.1 .3 3.3 2.2 3.3

Number of Human Interfaces Average 6.3 5.5 5.5 3.2 3.8 3.2 7.8 2.9 'a

Aj No. Resp. 19. 15. 15. 14. 14. 13. 17. 13.
Std. Dev. 3.0 3.3 3.3 3.1 3.0 2.9 2.7 2.9

Number of Functions Performed Average 6.9 6.9 6.7 5.0 7.0 3.7 3.4 4.9
No. Resp. 21. 17. 19. 16. 16. 15. 15. 15.
Std. Dev. 2.4 2.9 2.8 3.3 2.1 3.5 -. 2 2.9

'4. Overall Program Size Average 5.9 5.2 6.1 5.6 5.5 2.3 2.0 6.6
No. Resp. 20. 15. 18. 16. 15. 14. 14. 15.
Std. Dev. 3.3 3.6 2.8 2.9 3.8 3.3 2.8 2.0

Number of Compilation Units Average 4.9 4.5 4.6 4.1 5.9 1.6 1.6 2.9
No. Resp. 18. 15. 18. 16. 16 14. 14. 14.
Std. Dev. 3.2 3.9 3.1 3.5 3.3 2.7 2.! 3.7

W4-

.46

* A=.-" D -.# 40 .0.

&. ,.. ,.. .. , .* ,~'' 4". . ..o . . .4 . . ".. . . . . . . . " . -. -. . . . . . .. . . --



Sys. Rel.
SW FACTOR/CHARACTERISTIC Impact A B C D E F G

Maximum size per unit Average 5.9 4.5 5.1 5.5 5.2 2.9 2.1 3.8
No. Resp. 17. 14. 15. 15. 13. 14. 13. 13.

m,''Std. Dev. 3.4 3.9 3.4 3.1 3.3 3.4 2.9 3.6 "--

Number of Entries and Exits Average 7.7 5.0 7.3 6.7 8.4 3.1 2.9 2.2
No. Resp. 18. 15. 19. 19. 19. 15. 14. 13.

Std. Dev. 2.4 4.2 2.6 2.8 1.5 3.6 3.7 3.3

Number of Control Variables Average 6.8 5.6 5.6 6.5 7.8 2.8 3.3 2.7
No. Resp. 18. 14. 17. 16. 17. 14. 13. 14.
Std. Dev. 2.5 3.9 3.0 2.9 1.9 3.2 3.2 2.9

Use of Single-Function Average 6.8 5.1 7.1 5.6 6.6 2.6 2.4 1.7
Modules No. Resp. 18. 15. 17. 17. 15. 13. 13. 13.

Std. Dev. 3.1 3.7 3.0 3.0 2.9 2.8 3.4 3.3

Number of Modules Average 3.5 4.8 6.8 4.6 6.4 2.4 1.9 2.9
No. Resp. 17. 13. 17. 14. 14. 14. 13. 14.
Std. Dev. 3.2 3.9 3.0 3.4 3.4 3.3 2.7 3.0

Maximum Module Size Average 5.7 4.9 6.5 6.2 4.6 2.2 2.1 3.4
No. Resp. 18. 13. 18. 17. 14. 14. 13. 14.
Std. Dev. 2.8 4.6 2.9 3.1 3.5 3.4 3.4 3.2

Hierarchical Control Between Average 5.7 4.2 6.6 5.0 7.0 2.0 2.8 1.2
Modules No. Resp. 18. 13. 15. 13. 16. 13. 13. 13. .

Std. Dev. 3.1 3.5 2.9 3.3 3.3 3.0 3.4 2.4

Logical Coupling Between Average 6.5 4.4 7.1 5.9 7.4 2.2 2.3 2.3
Modules No. Resp. 16. 13. 15. 14. 17. 13. 13. 13.

Std. Dev. 3.2 4.2 3.0 3.2 2.5 2.9 2.8 3.5

Data Coupling between Modules Average 6.1 4.4 7.8 6.9 7.2 2.8 2.5 1.7
No. Resp. 18. 14. 16. 15. 18. 15. 13. 13.
Std. Dev. 2.7 4.3 2.4 3.0 2.5 3.3 3.0 2.8

, Separate Design and Coding Average 3.8 3.6 6.3 5.8 5.3 3.8 3.3 2.0
No. Resp. 17. 12. 18. 16. 14. 12. 12. 10.
Std. Dev. 3.5 3.2 3.1 3.3 2.9 3.6 2.8 2.1 A

Independent Test Organization Average 6.7 5.8 6.5 6.0 5.5 5.3 5.8 3.0
No. Resp. 19. 13. 15. 19. 15. 12. 13. 11.
Std. Dev. 3.1 3.9 3.4 3.3 3.4 3.3 3.5 2.9

* Independent Quality Assurance Average 7.0 6.2 5.7 5.9 4.9 4.8 6.1 2.2
No. Resp. 18. 13. 16. 16. 14. 12. 14. 11.
Std. Dev. 2.8 3.6 3.4 3.5 3.6 3.6 3.4 2.9

D- 5

S-....................... ]
". '. v'. , ." .- -", -. "... ..- ' - ' . . , . * ".. - , . , . ., .. . . ..- . . -..- - - , .- : , . ... ,



Sys. Rel.
SW FACTOR/CHARACTERISTIC Impact A B C D E F G

Independent Configuration Average 5.7 5.5 5.5 4.4 4.6 4.5 4.5 1.6
Control No. Resp. 17. 13. 14. 15. 14. 11. 13. 10.

Std. Dev. 2.9 3.8 3.6 3.7 3.5 3.4 4.0 1.8

Independent Verification Average 6.1 6.3 6.6 6.3 5.7 5.2 5.8 2.3
and Validation No. Resp. 18. 12. 15. 15. 15. 12. 13. 10.

Std. Dev. 3.3 3.3 3.3 3.6 3.6 3.4 3.5 3.0

Programing Team Structure Average 5.4 3.6 5.2 5.7 4.1 2.2 3.3 2.0
No. Resp. 18. 14. 17. 17. 15. 11. 12. 10.
Std. Dev. 3.0 3.9 3.0 2.9 2.5 2.3 2.8 2.1

.'* Educational Level of Team Average 4.5 4.3 5.2 3.8 4.9 3.8 4.5 2.4
Members No. Resp. 17. 14. 17. 16. 14. 12. i . 10.

N Std. Dev. 2.5 3.3 3.3 3.2 2.8 3.2 3.3 2.3

Experience Level of Team Average 7.9 6.1 7.4 6.0 6.6 5.3 5.8 4.9
Members No. Resp. 18. 16. 17. 16. 14. 12. 13. 10.

Std. Dev. 1.8 3.7 2.8 3.4 2.8 2.8 3.1 3.9

Definition/Enforcement of Average 7.3 6.8 7.1 7.4 7.8 7.2 6.5 3.1
Standards No. Resp. 19. 13. 17. 17. 14. 13. 13. 10.

Std. Dev. 2.4 3.5 2.5 2.5 2.7 2.6 3.5 3.1

Use of High Order Language Average 6.9 3.1 3.5 8.4 5.8 4.0 2.2 4.4
(HOL) No. Resp. 19. 14. 15. 19. 15. 13. 13. 12.

Std. Dev. 2.8 4.1 3.7 2.0 3.8 3.8 2.8 3.5

Formal Reviews (PDR,CDR,etc) Average 5.4 7.8 6.9 5.1 6.4 7.1 6.6 3.4
No. Resp. 21. 17. 19. 16. 16. 13. 14. 12.
Std. Dev. 3.1 2.4 2.8 4.0 3.5 3.3 3.7 3.4

N. Frequent Walkthroughs Average 7.5 7.7 8.2 7.6 8.0 7.5 7.5 4.3
No. Resp. 19. 15. 19. 18. 17. 13. 14. 12.
Std. Dev. 2.4 2.5 2.1 3.2 2.4 2.0 2.7 4.0

I" Top-Down & Structured Average 6.8 6.8 7.4 7.1 7.9 5.2 5.2 2.6
Approaches No. Resp. 20. 16. 18. 17. 15. 13. 13. 12.

Std. Dev. 2.7 2.9 2.8 2.9 2.4 3.3 3.7 3.5

Unit Development Folders Average 6.2 4.2 6.9 7.0 6.3 4.9 5.0 2.8
No. Resp. 17. 15. 16. 16. 15. 13. 13. 13.
Std. Dev. 2.4 3.6 2.7 2.5 2.5 3.4 3.3 3.0

Software Development Library Average 6.5 5.2 6.1 7.2 6.2 3.9 3.6 2.3
No. Resp. 16. 12. 14. 16. 13. 12. 11. 12.

Std. Dev. 3.2 4.2 3.0 3.4 3.6 3.6 3.9 2.5

D-6

s::5:



Sys. Rel.
SW FACTOR/CHARACTERISTIC Impact A B C D E F G

-..-

Formal Change & Error Average 6.5 5.5 5.7 5.9 5.5 4.6 4.7 2.1
Reporting No. Resp. 16. 13. 15. 16. 13. 12. 13. 13.

Std. Dev. 2.0 3.8 3.2 3.5 2.9 2.8 3.0 2.9

Progress & Status Reporting Average 4.7 3.9 5.0 4.7 4.6 3.9 4.6 1.5
No. Resp. 15. 13. 16. 16. 11. 11. 11. 12.
Std. Dev. 3.6 3.9 3.9 3.8 3.3 3.1 3.3 2.2

modular Construction Average 8.4 4.2 8.1 7.4 8.2 4.3 4.1 1.8 Z
No. Resp. 19. 14. 17. 15. 15. 12. 13. 12. ia,
Std. Dev. 2.0 4.0 2.7 2.9 2.2 3.0 3.6 2.0

Structured Design Average 8.0 3.9 7.9 7.1 7.3 4.9 3.6 2.3
No. Resp. 20. 15. 19. 15. 14. 11. 11. 12.
Std. Dev. 2.2 4.1 2.6 2.6 2.6 3.2 3.4 2.9

Structured Code Average 7.7 3.2 4.8 8.1 7.3 4.5 3.4 2.2
No. Resp. 19. 14. 15. 18. 14. 12. 12. 13.
Std. Dev. 2.3 4.0 3.9 2.2 3.0 3.8 3.4 2.8

Flow Charts Average 4.6 4.1 5.9 6.1 6.8 4.6 3.2 2.4
No. Resp. 18. 14. 13. 15. 13. 11. 12. 11. "
Std. Dev. 3.3 4.1 2.4 2.8 2.6 2.8 2.9 3.1

Structure Charts Average 6.0 5.6 7.0 5.7 6.7 3.8 3.5 2.0
No. Resp. 16. 11. 14. 12. 12. 10. 11. 11.
Std. Dev. 3.1 3.6 2.1 3.3 2.7 3.3 3.8 3.0

Decision Tables Average 5.6 5.7 6.7 5.7 6.2 3.5 2.9 2.2
No. Resp. 13. 10. 12. 12. 10. 11. 10. 10.
Std. Dev. 2.2 3.3 2.7 3.3 3.3 2.8 2.9 3.1

HIPO Charts Average 5.5 6.0 7.3 5.7 6.1 4.2 3.1 2.4

No. Resp. 16. 11. 14. 12. 11. 10. 11. 11.
Std. Dev. 2.5 2.8 2.1 3.3 3.1 3.2 3.4 3.6

System Requirement Spec Average 7.7 8.8 7.9 5.6 7.7 8.0 7.4 5.5
No. Resp. 19. 18. 15. 13. 12. 12. 13. 13.
Std. Dev. 2.3 0.9 2.4 3.6 2.6 2.5 2.8 3.8

Software Requirement Spec Average 7.8 9.0 8.5 6.9 8.7 5.9 7.4 5.6
No. Resp. 17. 17. 16. 15. 14. 12. 13. 11.

" Std. Dev. 2.4 0.0 1.4 3.3 1.1 3.6 2.8 3.6

Interface Design Spec Average 8.3 7.7 8.8 7.0 8.7 9.0 8.0 4.8
No. Resp. 18. 15. 17. 14. 15. 13. 13. 11.
Std. Dev. 1.5 2.5 1.0 3.4 1.0 0.0 2.6 3.8

D- 7



Sys. Rel.
SW FACTOR/CHARACTERISTIC Tmpact A B C D E F G

Software Design Spec Average 7.4 7.5 8.3 7.1 7.6 6.3 6.4 5.8
No. Resp. 18. 15. 18. 15. 15. 12. 13. 12.
Std. Dev. 2.9 3.2 2.3 3.1 2.7 2.8 3.4 3.7 -"

Source Listings Average 4.2 3.8 5.8 7.4 5.5 3.0 3.8 2.2
No. Resp. 17. 13. 13. 17. 13. 11. 12. 11.
Std. Dev. 3.3 4.0 3.9 2.8 3.3 2.9 4.1 2.9

Test Plans, Procedures & Average 7.3 6.4 6.7 6.3 6.4 5.6 5.4 5.2

Reports No. Resp. 19. 14. 14. 18. 14. 13. 14. 13.
Std. Dev. 2.0 3.5 3.0 3.1 2.5 3.2 3.3 3.2

S/W Development Plan Average 6.5 6.3 6.8 6.8 6.7 4.3 5.2 2.7
No. Resp. 21. 15. 16. 18. 14. 12. 13. 12.
Std. Dev. 3.0 3.3 2.5 2.5 2.6 3.4 3.7 3.4

S/W Quality Assurance Plan Average 5.4 5.4 6.3 5.8 5.5 3.9 5.1 2.5
No. Resp. 18. 15. 15. 16. 15. 13. 15. 13.
Std. Dev. 3.1 3.9 3.3 3.3 3.3 3.1 3.7 3.8 -

S/W Configuration Management Average 5.8 4.6 5.2 5.2 4.9 3.0 3.8 1.9
Plan No. Resp. 16. 14. 13. 15. 13. 11. 12. 12.

Std. Dev. 2.6 3.5 3.6 3.6 3.4 2.9 3.2 2.9

Requirements Traceability Average 7.2 8.3 7.5 4.9 6.3 4.6 5.5 3.0
Matrix No. Resp. 18. 17. 16. 13. 12. 12. 12. 13.

Std. Dev. 2.5 1.6 2.0 3.4 2.0 3.3 3.6 3.9

Version Description Document Average 3.6 4.8 4.3 4.8 3.8 2.8 3.5 1.6
No. Resp. 15. 13. 12. 13. 13. 12. 12. 12.
Std. Dev. 2.6 3.8 3.4 3.8 3.0 2.9 3.7 2.7

Software Discrepancy Reports Average 6.3 5.2 6.3 7.1 5.6 4.7 4.9 3.5
No. Resp. 18. 13. 14. 15. 13. 13. 13. 13.
Std. Dev. 3.1 4.0 3.3 2.6 3.6 3.4 3.8 4.0

Constant Mission Usage Average 6.7 6.3 6.3 5.6 6.1 7.3 5.3 2.8
No. Resp. 18. 12. 12. 12. 11. 12. 12. 10.
Std. Dev. 3.3 3.7 3.1 3.5 3.6 2.7 3.3 3.6

Periodic Mission Usage Average 4.9 4.8 4.5 3.5 4.6 5.3 3.7 1.9
No. Resp. 16. 11. 11. 11. 10. 12. 11. 10.
Std. Dev. 2.6 3.4 3.4 2.2 2.3 2.7 2.8 2.9

Infrequent Mission Usage Average 4.7 3.8 4.3 3.2 3.4 4.7 3.5 1.5
No. Resp. 18. 12. 12. 12. 10. 12. 12. 10.
Std. Dev. 3.9 4.0 3.8 3.3 3.4 3.6 3.7 2.7

D-8

.,4



Sys. Rel..

SW FACTOAvRerCTERISTIC Impact A B C D 8 F G

Variability of Hardware Average 5.9 4.8 4.4 2.4 2.8 8.0 4.6 1.4
No. Resp. 17. 9.0 10. 10. 9.0 12. 10. 7.0
Std. Dev. 2.7 4.3 3.7 3.0 2.1 1.8 3.0 1.6

Training Level of Operators Average 5.4 2.5 3.4 2.3 1.6 2.9 6.3 1.1
No. Resp. 18. 11. 10. 11. 10. 9.0 12. 8.0
Std. Dev. 2.7 3.8 3.2 3.2 2.4 3.2 3.3 1.6

Variability of Input Data Average 6.3 4.1 5.6 4.5 6.0 3.8 5.7 3.1
No. Resp. 18. 12. 11. 12. 12. 11. 11. 9.0
Std. Dev. 2.7 3.6 3.6 3.8 2.5 3.7 3.0 3.6

.

Variability of Outputs Average 4.1 3.8 4.9 4.5 4.9 3.8 4.6 0.9
No. Resp. 16. 12. 10. 12. 11. 10. 11. 8.0
Std. Dev. 3.5 3.7 3.9 3.8 3.7 3.3 2.8 0.4

Degree of Human Interaction Average 7.0 3.6 4.0 2.8 3.3 4.6 7.8 0.6
No. Resp. 18. 11. 10. 12. 10. 9.0 16. 8.0
Std. Dev. 2.5 3.4 3.4 2.9 2.2 2.4 1.9 0.5

Training Exercises Average 3.8 2.1 2.2 2.5 2.1 2.4 3.8 0.3
No. Resp. 17. 11. 10. 11. 10. 11. 12. 9.0
Std. Dev. 2.4 3.4 3.1 3.0 3.1 3.6 3.6 0.5

Periodic Self Test Average 5.9 4.3 4.9 3.3 3.6 3.4 2.1 0.6
No. Resp. 16. 10. 9.0 10. 9.0 11. 9.0 9.0
Std. Dev. 2.9 3.9 3.6 3.5 3.6 3.4 2.2 0.5

Built-in Diagnostics Average 7.3 4.0 6.0 5.3 5.3 4.8 4.4 1.4
No. Resp. 19. 11. 11. 12. 10. 12. 10. 9.0
Std. Dev. 2.6 3.3 3.3 3.7 4.1 3.6 4.2 2.9

Performed in the Field Average 6.4 6.4 6.5 5.8 6.3 6.7 6.2 3.3
No. Resp. 16. 8.0 8.0 10. 9.0 9.0 9.0 7.0
Std. Dev. 3.7 3.9 3.0 3.2 2.8 3.2 3.7 3.1

Performed at Depot Average 6.1 4.9 4.4 5.0 4.9 5.4 4.9 1.7
No. Resp. 14. 8.0 7.0 8.0 8.0 8.0 8.0 6.0

Std. Dev. 3.0 3.9 3.6 3.0 3.9 4.1 3.9 1.6

4 Performed at Factory Average 5.5 5.4 4.0 4.6 4.0 4.4 4.9 2.1
No. Resp. 15. 8.0 8.0 10. 9.0 9.0 9.0 7.0
Std. Dev. 4.1 4.1 3.5 3.5 4.0 3.8 4.1 2.0

Correctness Average 8.5 9.0 8.7 8.3 8.6 7.8 6.5 2.5
No. Resp. 17. 13. 12. 11. 10. 10. 10. 8.0
Std. Dev. 1.3 0.0 1.2 1.6 1.3 2.7 3.6 4.0

D-9

~~~~~~~...-.-.-..., . . ........ ........... ....- .,.. ...... ....- ,... ..-................ , ,--

.,.....I, ' . ' , ' . , .0 A. , ' ° - / - . , . , :1_ . '. , . . .A' A-. . ' - - , ' . , - " . , " . . " . . " . " - - " , - " . , - . " . . - , " . ' . " . ' . ' . ' . . - , - ° , , , , , . °

Sys. Rel.
SW FACtOR/CHARACTERISTIC Impact A B C D E F G

Validity Average 8.4 7.8 8.6 8.6 9.0 8.0 6.4 2.1
No. Resp. 14. 11. 11. 9.0 8.0 8.0 8.0 7.0 V,
Std. Dev. 1.5 2.9 1.2 1.3 0.0 2.8 3.9 3.5

Generality Average 3.7 6.2 7,0 7.0 5.6 6.7 4.4 1.6
No. Resp. 14. 10. 8.0 8.0 7.0 7.0 8.0 8.0
Std. Dev. 3.5 3.3 3.0 2.1 3.6 3.1 3.5 2.1

Testability Average 7.7 6.0 6.1 6.7 7.2 5.8 5,9 1.8
No. Resp. 19. 11. 11. 12. 9.0 10. 8.0 8.0
Std. Dev. 2.3 3.8 3.1 3.2 2.9 3.2 3.8 2.1

Efficiency / Economy Average 3.3 4.8 5.3 6.3 5.8 4.9 3.4 4.9
No. Resp. 14. 11. 10. 12. 9.0 9.0 9.0 8.0
Std. Dev. 3.6 4.2 4.1 3.7 3.5 3.6 3.1 3.9

* Resilience (Robustness) Average 7.1 8.0 8.1 7.0 7.3 5.6 5.4 1.1
No. Resp. 13. 8.0 9.0 8.0 7.0 7.0 7.0 7.0
Std. Dev. 2.8 2.8 2.7 3.0 3.1 3.6 3.8 1.8

Useability Average 5.7 5.7 7.0 6.3 6.9 5.6 6.4 2.4
No. Resp. 14. 9.0 10. 9.0 8.0 7.0 8.0 7.0
Std. Dev. 3.8 4.2 3.4 2.8 3.3 2.8 3.2 2.4

Fault Tolerance Average 8.3 8.2 7.9 6.6 7.5 5.4 6.2 2.3
No. Resp. 17. 10. 11. 10. 8.0 9.0 9.0 8.0
Std. Dev. 1.6 2.5 1.9 2.8 3.0 3.1 3.7 2.3

Clarity Average 7.1 6.9 7.3 7.5 7.7 5.9 7.3 2.1
No. Resp. 15. 12. 12. 11. 9.0 8.0 10. 8.0
Std. Dev. 2.1 2.9 2.7 2.7 2.8 3.8 3.1 2.4 ,

Readability Average 5.5 5.6 6.8 7.3 7.2 6.0 6.3 1.6
No. Resp. 15. 11. 11. 12. 9.0 8.0 9.0 8.0
Std. Dev. 2.6 4.1 3.7 3.2 3.5 3.5 3.5 2.1

Maintainability Average 8.1 5.6 8.0 8.0 7.7 5.4 7.1 3.3
No. Resp. 17. 11. 12. 12. 9.0 9.0 9.0 8.0
Std. Dev. 2.2 3.6 1.8 1.8 2.8 3.1 3.2 3.2

Modifiability Average 7.1 6.0 7.2 6.8 7.0 5.0 6.9 3.0
No. Resp. 15. 10. 11. 11. 8.0 7.0 8.0 7.0
Std. Dev. 3.3 3.7 2.8 2.8 3.0 2.3 3.3 3.4

Flexibility Average 6.4 5.2 7.8 7.0 7.5 5.0 5.9 3.6
No. Resp. 14. 10. 10. 10. 8.0 7.0 8.0 7.0
Std. Dev. 3.4 4.2 2.7 2.8 3.0 3.3 3.8 4.1

I D -10

• 2t +,, .~ .'" .,.""'"',. ' .'.. ' +'.. ,,-'''" + '' '' 2+'.,' . ' ;,",t ,+"',: "-.-.+' ' '. ' '.,. .• ' % ," - % " ' , ,,, -, .%, . .,
' ' .+. .; e; .P : b ,< < +..v-''i'- ? '- ,",. " "-/ t ,'k ,+ ","-",,-''.-

Sys. Rel.
SW FACflJWCHARACrERISTIC Impact A B C D E F G

Portability Average 3.4 5.3 4.9 6.6 5.5 4.9 3.4 3.9
4No. Resp. 13. 10. 10. 10. 8.0 9.0 8.0 8.0

Std. Dev. 3.2 3.7 3.4 3.4 4.0 3.6 3.1 3.7

Reusability Average 3.6 5.8 5.3 5.9 6.1 4.5 4.3 3.7
No. Resp. 12. 9.0 9.0 9.0 7.0 8.0 7.0 7.0

-AA

Interoperability Average 4.6 6.5 5.9 5.4 6.7 5.5 4.9 3.6
No. Resp. 14. 10. 8.0 8.0 7.0 8.0 8.0 7.0
Std. Dev. 3.4 3.6 3.8 3.5 3.1 3.3 3.2 4.1

4D

A..

aa] .mz

APPENDIX E

FULL SCALE SURVEY FORM & INSTRUCTIONS

Q.~ 7-.!

* .~.~ - .~---4- I I I.. Ni

SYSTEM RELIABILITY SURVEY

Conducted By: Completed By:

Ed Soistman (MP-306) Nam:
Martin Marietta Aerospace
Orlando Division ._.___ _ _
P.O. Box 5837
Orlando, FL 32855

(305) 356-7062

Conducted For: Address: ""__ _

Rome Air Development Center
Mr. Gene Fiorentino (RADC/PBET)
Griffiss AFB, New York 13441

Please check the block which MOST closely identifies your primary involvement
with systems involving software:

Systems User Systems Definition

Systems Procurement Software Design

Systems Validation System Development

Systems Cperations Systems Management

Systems Research Training / Education

0,__ ___

How many years of experience do you have in systems or software activities? _'-'.._

What is your highest level educational degree? "__ _

What single discipline best describes your education/expertise: _-__,

Comments concerning this survey: __ ___

E 2

-:.,, . , : -,.,,,,,-:,-.-. ,--.....-...., .-....................

.. ,*.

SHEET 1

Please rank the major categories in order of importance to system reliability using the values 1
thru 5 with "I" being the assigned to the most important category. Use a similiar ranking within
each of the categories to indicate each requirement's likelihood to introduce errors. As before,
use a value of "1" to indicate the most likely.

*SUB- *
*RANK **RANK * .

OPEATIOAL APPLICATION TYPE

Predcftinantly Control

Predominantly Real Tine

Predominantly Input/utput

Predominantly Interactive

Predominantly Computational

MISSION VARIABILITY I-_-."_
Many Distinct Operational Missions

Several Variations of Operational Missions

Single operational Mission

EUCTIONAL CCMPLEXITY I

Many Operations Required - Highly Complex

Many operations Required - Relatively Simple

Few Operations Required - Highly Complex

.4 Few Operations Required - Relatively Simple

SYSTEM riEAcrc.-

Extensive Hardware Interface Requirements

MinLial Hardware Interface Requirements

Extensive Software Interface Requirements

Minimal Software Interface Requirements

Extensive Human Interface Requirements

Minimal Human Interface Requirements I._

INjT DCMAIN VARIABILITY 77,

Wide Range of Error-Prone Inputs

Wide Range of Error-Free Inputs
Narrow Range of Error-Prcre Inputs

Narrow Range of Error-Free Inputs

E -3

N7.

,I,.

" . . .-. - . .•- .. ." %. -. •. • , •°.,- -.. -. ".. '. ". - "- " ' : ,-.. - . .'." "-- ,. -

SHEET 2

Use the following codes to indicate the relative quantity of errors introduced during
each of the phases shown: (blank) for NO OPINION

L for a L level of errors introduced
M for a MWfERATE level of errors introduced
H for a HIGH level of errors introduced

•**** Phase When Introduced *****

Req. Prelim. Detailed
OPERATIONAL APPLICATION TYPE Defn. Design Design Code

Predciinantly Control

Predcainantly Real Time

Predominantly Input/Output

Predominantly Interactive

Predominantly Ccepitational

MISSION VARIABILITY

Many Distinct Operational Missions

Several Variations of Operational Missions

Single operational Mission

* FUt-MN L OCMPLEXITY -

Many Cperaticns Required - Highly Ccplex

Many operations Required - Relatively Simple

Few operations Required - Highly Complex

Few operations Required - Relatively Simple

SYSTEM' INTRAcrI

Extensive Hardware Interface Requirements

Minimal Hardware Interface Requirements

Extensive Software Interface Requirementsn

Minimal Software Interface Requirements'

Extensive Human Interface Requirements

Minimal Human Interface Requirements

INPUrT DIAIN VARIABILITY

Wide Range of Error-Prone Inputs

Wide Range of Error-Free Inputs

Narrow Range of Error-Prone Inputs

Narrow Range of Error-Free Inputs

E-4

0

%

SHEET 3 -.-.

Use the following numeric codes to indicate the percentage of inherent errors which fall into
each category. The sum of each raw should equal 10 which represents 100% of the errors induced.

0 0% of Errors Present
1 10% of Errors Present

9 90% of Errors Present
10 100% of Errors Present

***** General Error Category *****

Logic Inter- I/O Ccnp.

OPERATIONAL APPLICATION TYPE face

Predominantly Control

Predominantly Real Tim

Predominantly Input/tutput

Predominantly Interactive

Predominantly Ccmputational

MISSION VARIABILITY

Many Distinct Operational Missions

Several Variations of Operational Missions y'

Single operational Mission

FU C NAL ROIREMEN-"

Many Functions Required - Highly Interrelated

Many Functions Required - Relatively Independent

Few Functions Required - Highly Interrelated

Few Functions Required - Relatively Independent 7 -

t S S a I r eu sON

Extensive Hardware Interface Requirements

Minimal Hardware Interface Requirements
Extensive Software Interface Requirements

Minimal Software Interface Requirements

Extensive Human Interface Requirements

Minimal Human Interface Requirements

INPTJ [2MA.IN VARIABILITY

Wide Range of Error-Prone Inputs

Wide Range of Error-Free Inputs -

Narrow Range of Error-Prone Inputs

Narrow Range of Error-Free Inputs

5.-..

.,

SHEET 4

Use the following nuneric codes to indicate the relative percentage of errors that might be .-j
avoided by use of the listed mchanism: NOTE: THE SLM DOES NOT HAVE TO BE 100%.

(blank) No OPINICN

0 0% Error Avoidance
1 10% Error Avoidance

9 90% Error Avoidance
10 100% Error Avoidance

***** General Error Category %

Logic Inter- I/O Cc1p.

O"ANIZATINAL OCNSIDERATICNS face

Independent Quality Assurance Organization

Independent Test Organization

Independent Verification and Validation (Iv&v)

Use of a Software Support Library

Use of a Software Configuration Control Board

DOt-NTION

Thorough and Enforced Software Development Plan

Rigidly Controlled System Requirements Spec

Rigidly Controlled Interface Design Spec

Rigidly Controlled Software Requirements Spec

Rigidly Controlled Software Functional Design Spec

Rigidly Controlled Software Detailed Design Spec

ME11IJUS EM'PLOYEFD

Requirements Traceability Matrix

Structured Analysis Tools

Program Specification Language (PSL)

Program Design Language (PDL)

High Order Language (HDL)

Hierarchical, Top-Down Design

Structured Design

Single Function modularization

Structured Code

Use of Automatic Measurement Tools

Use of Automatic Test Tools

6 .,*,..

SHEET 5
Use the following numeric codes to indicate the relative percentage of errors that might be
detected by use of the listed mechanism: NOTE: THE SiM DOES NOT HAVE M1 BE 100%.

(blank) NO OPINICN.
0 0% Error Detection
1 10% Error Detection -

9 90% Error Detection [-

10 100% Error Detection '-

***General Error Category ***.-

Logi" Inter- I/D Ccmp.

IN IAL REVIEWS faceFrequent Peer Walkthroughs

Infrequent Peer Walkthroughs
Frequent Progress Reviews

Infrequent Progress Reviews

Frequent Quality Aud its

Infrequent Quality Audits

ERRCR HANDLING

Use of Software Problem Reports Prior to POT

Use of Software Problem Reports Subsequent to PQT

Use of Software Problem Reports Subsequent to M I -

Use of Specification Change Notices (SQ's)

Use of Engineering Change Nctices (ECN's)

FORMAL REVIEWS

Software Requirements Review (SRR)

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Test Readiness Review (TRR)

qFunctional Configuration Audit (FCN)

Physical Configuration Audit (PCA)

TESTS AND DEMIONTATI

Informal Unit-Level Testing

Preliminary Qualification Testing (P(T)

Formal Qualification Testing (Fr)

Software Integration Testing

System Integration Testing ,-_7

operational Field Testing

2,-%

.. .' .e ',',.,,,,...,' . ''-'--'' '' .. < -. ''..''" - -,.." -.. ,, o,' ', '. ' ,.- :, .- ,.• ,'i"" .. " " " " 7"' " "

.. '

..,., .

I N S T R U C T 1 o N S GLOSSARY

. FOR

S Y S T E M R E L I A B I L I T Y S U R V E Y

This instruction packet is provided to explain and clarify the enclosed survey
form. It should be used as a reference whenever the terms or instructions
used in the survey need further clarification.

There is a separate section for each of the five sheets of the survey for ease
of reference. Each section contains an expanded set of instructions, defin-
itions of each of the terms used as column headings and definitions for each
of the row entries.

Although most definitions apply to more than one survey sheet, the definitions
* have been repeated for ease of use.

'/' -" *** A*A*******.* **************************A***********************,Z

. * k

* SPECIAL N(YrE FOR SHEETS 1, 2 AND 3 *
* ,

.y< kA **********A****A**

* In any large software product, it is extremely difficult to precisely *
.* identify inherent characteristics of the overall product due to the *

'a'. * vast number and diversity of functional requirements that must be sat- *
* isfied. *

'' * Your responses to the survey questions should be based on the assump- *
-..-. * ion that any software system can be decomposed into functionally dis- *

' crete sets of requirements which, in turn, can be better correlated to *
the entries on the survey.

L * *

. That is, without pre-supposing a modular design, we can consider that *

. the requirements themselves can be "modularized" so that each "module" *
*,can be evaluated on its own merit. *

* Your responses on sheets 1, 2 and 3 should, therefore, be oriented *
* towards these "modules" rather than the overall computer program. *

E 8-" .- -. .- .'- . ' -.-'- . ' -.- '.- -.- -. ... , ., ,-.- -,' .' ,' ,:k x .- . . . ,-.-,, -,' *-. ,-,,2, ,, ,,(

I N S T R U C T IO N S - S H E E T 1

Sheet 1 itemizes certain INHERENT factors which exist in a software product
when it is originally conceived and defined. They are the operational require-
ments which the system is expected to perform. It is felt that the require-
ments for certain capabilities influence the complexity and "error-proneness"
of the product independent of the development methodologies used. In reality,
these factors influence the development and testing methodologies.

Column entries on Sheet 1 are relative rankings of importance. In the first
column, you are asked to rank the five major categories against one another.
In the second column, you are asked to rank the subcategories within each
group.

Row entries on Sheet 1 are categories and subcategories of inherent factors
which have been singled out for purposes of this survey.

ROW DEFINITIONS - SHEET 1 p

OPERATIONAL APPLICATION TYPE -- All responses to this survey should be orient-
ed toward characteristics of individual modules. The purpose of each module
can usually be used to determine its PREDOMINANT application type. For exam-
ple if the purpose of the module is to issue commands to hardware components
we would say the the module is of the "predominantly control" type even
though it includes computational commands. - '

CONTROL - The action of initiating, sequencing, terminating or otherwise
influencing the operation of system components external to the software.

REAL-TIME - The processing of information or data in a manner sufficiently
rapid that the results of the processing are available in time to influ-
ence the process being monitored or controlled.

INPUT/OUTPUT - The process of accepting and delivering data to and from
system components external to the software. For purposes of this survey
input/output should be limited to file input and report output activities
as opposed to the control type described above or the interactive type
described below.

INTERACTIVE - A method of conversational input/output wherein the software
produces an output which invokes a responsive input or receives an input
which requires a responsive output.

COMPUTATIONAL - The process wherein internally available data is combined,
rearranged and/or otherwise manipulated to alter its state. For example
a module whose purpose is to convert measurements from one dimension to
another should be regarded as being computational.

E 9

A..

*, '$ " . % "
"

-

.4.

MISSION VARIABILITY -- In most large scale software applications, a variety of
"missions" or modes of operation are supported. For example, software re-
quirements for embedded software in a missile system may involve distinct
modes of operation such as "pre-flight", "boost" and "ballistic" activities.
Some modules will perform the same activities regardless of the mission
type, while others will have distinctly different characteristics depending
on the mission mode. MANY and SEVERAL operational missions are relative
terms that may be interpreted at the discretion of the reader.

FUNCTIONAL COMPLEXITY - In order to meet its intended purpose, a module may be -

required to perform more than one specific task. The purpose of these
entries on the survey is to accommodate the fact that some functions are
relatively easy to design and code whereas others can require extensive and
highly complex logic. The adjectives used are relative and may be inter-
preted by the reader.

SYSTEM INTERACTION -- This category is a refinement of earlier categories.
Interface requirements are as previously defined. EXTENSIVE and MINIMAL are
relative terms that may be interpreted by the reader. Remember that you are
evaluating individual functional requirenents, not the overall software.

INPUT DOMAIN VARIABILITY - This category is a refinement of earlier catego-
ries. Here, the interest is not in the quantity of inputs required, but
rather the domain from which it comes. For example, a function which re-
quires "yes" or "no" answers to many questions would have a "NARROW RANGE"
of values (yes or no). On the other hand, a single input of an angle meas-
urement might have a domain of -180.0000 to +180.0000 degrees. This one
would be considered to have a "WIDE RANGE" of inputs.

ERROR-PRONE/ERROR-FREE - These adjectives are used to distinguish the effects
on module reliability caused by the SOURCE of data inputs. A device which
contains self-checking features to insure that its inputs to the computer
are correct would be considered "error-free". On the other hand, other
input devices, such as human operators, may be considered to be "error-
prone". Despite the high degree of subjectivity in rating this category,
you are asked to rate the effects introduced by such situations.

: ": E 1 0 -

%w

V d.'S

:-'.''." -'. - "-"•." "" "- '-" ," "•" " "."." . ". .-".-" .-•' ' - .-'" .-" • " " ... "" '"". .,..-..,..- '-4. .. -4'.'.

I N S T R U C T IO N S - S H E E T 2

Column entries on Sheet 2 represent phases of the life cycle wherein errors
are likely to be introduced.

Row entries on Sheet 2 are the same INHERET FACIORS that are used on Sheet 1.
their definitions are repeated below.

You are asked to indicate the relative number of errors that are introduced in

each phase due to each characteristic. Please remember that we are analyzing

functions (modules), not the overall software product. DO NOT "read in" any

particular methodology. 0.

C O L U M N D E F I N I T I O N S - S H E E T 2

REQUIREMENTS DEFINITION PHASE - This is the period of time during which the
requirements for the software product, such as functional and performance

characteristics are defined and documented. .v.-

PRELIMINARY DESIGN4 PHASE - During this phase the software architecture is
defined as a result of analysis of the requirements and consideration of
possible design alternatives. Typical activities include the definition
and structuring of computer programs, components and data, definition of
interfaces and preparation of timing and sizing estimates.

DETAILED DESIGN PHASE - During this phase, the preliminary design is refined

and expanded to contain more detailed descriptions of the processing logic,
data structures and input/output requirements. The level of detail must be.
sufficient for implementation.

CODING OR IMPLEMENTATION PHASE - The software product is created and debugged
during this phase. The detailed design is implemented via a computer "lan-
guage" which may range from pure binary coded instructions to a very high
order procedural language. For purposes of this survey, testing of indiv-
idual software components are considered to be included in this phase.

E -11

%... . .- "

.% -_

~~. .. *~~~a •.. * ...

SROW DE F I NIT IONS - SHEET 2

OPERATIONAL APPLICATION TYPE - All responses to this survey should be orient-
ed toward characteristics of individual modules. The purpose of each module
can usually be used to determine its PREDOMINANT application type. For exam-
ple if the purpose of the module is to issue commands to hardware components
we would say the the module is of the "predominantly control" type even
though it includes computational commands.

CONTROL - The action of initiating, sequencing, terminating or otherwise
influencing the operation of system components external to the software.

REAL-TIME - The processing of information or data in a manner sufficiently
rapid that the results of the processing are available in time to influ-
ence the process being monitored or controlled.

INPUT/OUTPI T - The process of accepting and delivering data to and from
system components external to the software. For purposes of this survey

* jinput/output should be limited to file input and report output activities
as opposed to the control type described above or the interactive type
described below.

INTERACTIVE - A method of conversational input/output wherein the software
produces an output which invokes a responsive input or receives an input
which requires a responsive output.

COMPUTATIONAL - The process wherein internally available data is combined,
rearranged and/or otherwise manipulated to alter its state. For examplea module whose purpose is to convert measurements from one dimension to

another should be regarded as being computational.

MISSION VARIABILITY - In most large scale software applications, a variety of

"missions" or modes of operation are supported. For example, software re-
quirements for embedded software in a missile system may involve distinct
modes of operation such as "pre-flight", "boost" and "ballistic" activities.
Some modules will perform the same activities regardless of the mission
type, while others will have distinctly different characteristics depending
on the mission mode. MANY and SEVERAL operational missions are relative
terms that may be interpreted at the discretion of the reader.

FUNCTIONAL COMPLEXITY - In order to meet its intended purpose, a module may be
7 ... required to perform more than one specific task. The purpose of these

entries on the survey is to accommodate the fact that some functions are
relatively easy to design and code whereas others can require extensive and
highly complex logic. The adjectives used are relative and may be inter-
preted by the reader.

E -12

% %.

" -'x% ' ' ; - 2 ; -"" '. k ' - +,';'..' - -,-'.-'' +",.' .' -. ''. '- '- " " " -" "..+ " " R'- 'I"!*'¢'

SYSTEM INTERACTION -- This category is a refinement of earlier categories. v.>.
Interface requirements are as previously defined. EXTENSIVE and MINIMAL are
relative terms that may be interpreted by the reader. Remember that you are

evaluating individual functional requirements, not the overall software.

INPUT DOMAIN VARIABILITY This category is a refinement of earlier catego- j
ries. Here, the interest is not in the quantity of inputs required, but

rather the domain from which it comes. For example, a function which re-
quires "yes" or "no" answers to many questions would have a "NARROW RANGE"
of values (yes or no). On the other hand, a single input of an angle meas-
urement might have a domain of -180.0000 to +180.0000 degrees. This one ..

would be considered to have a "WIDE RANC-" of inputs.

ERROR-PRONE/ERROR-FREE - These adjectives are used to distinguish the effects
on module reliability caused by the SOURCE of data inputs. A device which
contains self-checking features to insure that its inputs to the computer
are correct would be considered "error-free". On the other hand, other '.5

input devices, such as human operators, may be considered to be "error-
prone". Despite the high degree of subjectivity in rating this category,
you are asked to rate the effects introduced by such situations.

7r7) ~- '5- .-

E - 13

:,., . . .,. - .-.. *.-. - *. * ,.d. .* , ,....... .,... . 5* -. . .,5 . -,,, ,..,
" ' " ", " " " ' ' -- ' . ,. . . 5 5.. * .**.- * . *...*, .-*-* .- .- ..-... ...-

.7 -

~5~*5 5

4'.

I N S T R U C T I O N S -- S H E E T .3

Column entries on Sheet 3 are general error categories and are defined below.

Row entries on Sheet 3 are the same as those on Sheets I and 2 and are re--
peated below.

You are asked to distribute whatever errors may occur into the four categories
listed. On this sheet, the quantity of errors is irrelevant. The question
being asked is, "Assuming that the row entry causes errors, what percent falls
into each category?"

v~.>

COLUMN DEFINITIONS - SHEET 3

LOGICAL ERRORS - This category includes all instances where a particular
function is missing, incorrect or inadequate due to inadequate requirements
definition, design errors or omissions or implementation errors.

INTERFACE ERRORS - This category includes all instances where a required
function is not implemented properly due to improper communication between

*.-" system components. All possible interfaces are included in the grouping:

- Software/Software: Includes errors which occur between software components
of the system such as when one program unit fails to call, calls in the
wrong sequence, or otherwise improperly calls another program unit. Also
included are all errors resulting from the improper sharing or passing of
data and/or control variables between program units.

- Software/Hardware: Includes all errors which result in loss of data or
untimely exchange of data between system hardware and embedded software.
Included are situations where buffers become saturated or computation
cycles exceed their timing allocations. Also included are errors caused
by improper data exchange between system hardware and embedded software.

- Software/Human: SEE INPUT/OUTPUT ERRORS

INPUT/OUrPUT ERRORS - This category includes all instances where a requlire'd

A' function is not properly accomplished due to the manner in which input or
output is implemented. For purposes of this survey, include in this cate-
gory all software/human interfaces. For example, on input the software rmay
either accept improper commands or reject proper ones. On output, the oft
ware may generate erroneous or ambiquous messages to the op[.rator. Since
the survey is oriented toward mission critical, embedded soft-ware, I/0 be" " tween the hardware and other software components is considorod in, the ,

"Interface Error" category.

E -- 14

%u

.4A

COMPUTATIONAL ERRORS - These are calculation errors. Included are: errors of
omission such as uninitialized variables; mathematical errors such as incor-
rect expressions, conversion and truncation errors; and programming errors

, such as improper use of indices, variables and overlays. DO NOT INCLUDE
- SYNTAX ERRORS that would be eliminated prior to operation.

-a.

-a.-

~-a

.,.'.. . V

*'

--
a. ,~

E - 1 5 ." J

.- ~ ~ ~ ~ ~ ": 41.

ROW D E F I N I T I O N S - S H E E T 3

OPERATIONAL APPLICATION TYPE - All responses to this survey should be orient-
ed toward characteristics of individual modules. The purpose of each module
can usually be used to determine its PREDOMINANT application type. For exam-
ple if the purpose of the module is to issue commands to hardware components
we would say that the module is of the "predominantly control" type even
though it includes computational commands.

CONTROL - The action of initiating, sequencing, terminating or otherwise
influencing the operation of system components external to the software.

REAL-TIME - The processing of information or data in a manner sufficiently
rapid that the results of the processing are available in time to influ-
ence the process being monitored or controlled.

INPUT/OUTPUT - The process of accepting and delivering data to and from
system components external to the software. For purposes of this survey
input/output should be limited to file input and report output activities
as opposed to the control type described above or the interactive type
described below.

INTERACTIVE - A method of conversational input/output wherein the software
produces an output which invokes a responsive input or receives an input
which requires a responsive output.

COMPUTATIONAL - The process wherein internally available data is combined,
rearranged and/or otherwise manipulated to alter its state. For example
a module whose purpose is to convert measurements from one dimension to

V' another should be regarded as being computational.

MISSION VARIABILITY - In most large scale software applications, a variety of
"missions" or modes of operation are supported. For example, software re-
quirements for embedded software in a missile system may involve distinct
modes of operation such as "pre-flight", "boost" and "ballistic" activities. 4.

Some modules will perform the same activities regardless of the mission
type, while others will have distinctly different characteristics depending
on the mission mode. MANY and SEVERAL operational missions are relative
terms that may be interpreted at the discretion of the reader. "4

. FUNCMIONAL COMPLEXITY - In order to meet its intended purpose, a module may be
required to perform more than one specific task. The purpose of these
entries on the survey is to accommodate the fact that some functions are

g1 relatively easy to design and code whereas others can require extensive and
highly complex logic. The adjectives used are relative and may be inter-
preted by the reader.

E -16

g. %
,.', "'. .." -".-<-":- -" " .-". ""'-'-"'-'-'-".''- -.'-' -'.' .- .' "'..'". "-. -. '..' -" -'..•..-...-.-..."v...."-..,'..,-.........-."..""........-", .

SYSTEM INTERACTION -- This category is a refinement of earlier categories.
Interface requirements are as previously defined. EXTENSIVE and MINIMAL are
relative terms that may be interpreted by the reader. Remember that you are

evaluating individual functional requirements, not the overall software.

INPUT DOMAIN VARIABILITY - This category is a refinement of earlier catego-
ries. Here, the interest is not in the quantity of inputs required, but

rather the domain from which it comes. For example, a function which re-
quires "yes" or "no" answers to many questions would have a "NARRC RANGE"

of values (yes or no). On the other hand, a single input of an angle meas-
urement might have a domain of -180.0000 to +180.0000 degrees. This one
would be considered to have a "WIDE RANGE" of inputs.

ERROR-PRONE/ERROR-FREE - These adjectives are used to distinguish the effects
* on module reliability caused by the SOURCE of data inputs. A device which
4%, contains self-checking features to insure that its inputs to the computer

are correct would be considered "error-free". On the other hand, other
input devices, such as human operators, may be considered to be "error-

*" prone". Despite the high degree of subjectivity in rating this category,
you are asked to rate the effects introduced by such situations.

' 1

<" E - 17 i

.9.

rv - -,r- U.- - -n

I N S T R U C T I O N S - S H E E T 4

Column entries on Sheet 4 are the same general error categories used on Sheet
3 and their definitions are repeated below.

Row entries on Sheet 4 "error AVOIDANCE mechanisms" which are effective in
minimizing or reducing errors.

You are asked to evaluate the effectiveness of each mechanism by indicating
what percentage of each error type can be avoided by the use of that mech-
anisin.

COLUMN DEFINITIONS - SHEET 4

LOGICAL ERRORS -This category includes all instances where a particular
function is missing, incorrect or inadequate due to inadequate requirements
definition, design errors or omissions or implementation errors.

INTERFACE ERRORS - This category includes all instances where a required
function is not implemented properly due to improper communication between
system components. All possible interfaces are included in the grouping:

- Software/Software: Includes errors which occur between software components
of the system such as when one program unit fails to call, calls in the
wrong sequence, or otherwise improperly calls another program unit. Also
included are all errors resulting from the improper sharing or passing of
data and/or control variables between program units.

-- Software/Hardware: Includes all errors which result in loss of data or
. •,untimely exchange of data between system hardware and embedded software.

Included are situations where buffers become saturated or computation
cycles exceed their timing allocations. Also included are errors caused
by improper data exchange between system hardware and embedded software.

- Software/Human: SEE INPUT/OUTPUT ERRORS

INPUT/OUTPUT ERRORS - This category includes all instances where a required
-.-... function is not properly accomplished due to the manner in which input or

output is implemented. For purposes of this survey, include in this cate-
gory all software/human interfaces. For example, on input the software may
either accept improper commands or reject proper ones. On output, the soft-
ware may generate erroneous or ambiguous messages to the operator. Since
the survey is oriented toward mission critical, embedded software, I/O be-
tween the hardware and other software components is considered in the
"Interface Error" category.

E -18

%-1...

%" ,." ", %". ". -, .,". ". % % " "..,.........• " ." •
• •.......- . .p . ,

COMPUTATIONAL ERRORS - These are calculation errors. Included are: errors of

omission such as uninitialized variables; mathematical errors such as incor-

rect expressions, conversion and truncation errors; and programming errors

such as improper use of indices, variables and overlays. DO NOT INCLUDE

SYNTAX ERRORS that would be eliminated prior to operation.

El

Io

.".

. ,,.

R O W D E F I N I T IO N S - S H E E T 4

,$-'; QUALITY ASSURANCE ORGANIZATION -- A group responsible for the planned and : N
systematic review of the software development process and its products to

provide adequate confidence that the item or product conforms to established
technical requirements. 2]

TEST ORGANIZATION -- A group responsible for preparing test plans and proce-
dures, executing the test procedures, and analyzing the test results in
order to verify that the system performed its intended functions. This
group is also responsible for documenting problems detected during testing -1
and verifying by retest that corrections to the software work properly.

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) - Verification and validation
of a software product performed by an organization that is both technically
and managerially separate from the organization responsible for developing
the product.

SOFIWARE SUPPORT LIBRARY - A software library containing computer readable
and human readable information relevant to a software development effort.

CONFIGURATION CONTROL BOARD - The authority responsible for evaluating and
approving or disapproving proposed engineering changes, and ensuring
implementation of the approved changes.

SOFTiWARE DEVELOPMENT PLAN -- This document presents the comprehensive plan
for the project's software development activities by describing the software
development organization, the software design and testing approach, the pro-
grams and documentation that will be produced, software milestones and
schedules, and the allocation of development resources.

SYSTEM REQUIZEMENTS SPECIFICATION - This document states the technical and
mission requirements for a system as an entity, allocates requirements to
functional areas, and defines the interfaces between or among the functional
areas.

INTERFACE DESIGN SPECIFICATION - This is an optional document which is re-
quired whenever the system contains two or more computers that must com-
municate with each other. It provides a detailed logical description of all

data units, messages, control signals and conmunication conventions between
the digital processors.

SOF7IWARE REQUIREMENTS SPECIFICATION - This document establishes the require-
ments for the performance, design, test and qualification of the computer
program.

SOFIWARE FUNCTIONAL DESIGN SPECIFICATION - This document establishes the
functional design of the software at the computer program level. It provides
sufficient design information to accomplish the goals of the Preliminary

i Design Review.

E 20

-i:j

SOF7WARE DETAILED DESIGN SPECIFICATION - This document provides complete
programing design sufficiently detailed for a programmer to code from with
minimal additional direction.

REQUIREMNTS TRACEABILITY MATRIX - A set of tables which provides traceabil-
ity of software requirements from the system specification to the individual
item requirements specifications, to the design specification which imple-
ments the requirements, and to the software plans and procedures that verify
that requirements have been fully implemented.

STRUCTURED ANALYSIS TOOLS - These define a systematic method of using func-
tion networks and other tools to develop an analysis-phase model of a sys-
tem. Typical tools include Data Flow Diagrams, Data Dictionaries and struc-
tured English.

PROGRAM SPECIFICATION LANGUAGE (PSL) -- A language used to specify the re-
quirements, design, behavior, or other characteristics of a system or sys-
tem component.

PROGRAM DESIGN LANGUAGE (PDL) - A language with special constructs and, some-
times, verification protocols used to develop, analyze, and document a de-
sign.

HIGH ORDER LANGUAGE (HOL) - A programming language which provides compression
of computer instructions such that one program statement represents many
machine language instructions. It is non-problem specific and is used by
programers to conmmunicate with the computer.

HIERARCHICAL DESIGN - A design which consists of multiple levels of decom-
position, general to specific. It is a structured approach with the addi-
tional restriction that program control is accomplished hiearachially. That
is, program modules may only invoke other modules which are subordinate to
them.

TOP-DOWN DESIGN - An ordering to the sequence of decisions which are made in
the decomposition of a software system, by beginning with a simple descrip-
tion of the entire process (top level). Through a succession of refinements
of what has been defined at each level, lower levels are specified.

STRUCTURED DESIGN - A disciplined approach to software design which adheres
to a specified set of rules based on principles such as top-down design,
modularization, stepwise refinement, etc.

SINGLE FUNCTION MDULARIZATION - An organization of the functions of the
computer program into a set of discrete program modules each of which is
designed to perform a single function.

STRUCTURED CODE - Code that has been generated with a limited number of well-
defined control structures using stepwise refinement.

E -21

E - 2N ".-

AUTOMATIC MEASUREMENT TOOLS - This category includes all computer programs
which evaluate other computer programs. They may he used to verify comp]i-
ance with coding standards, to measure progress, or to provide a measure of
complexity. They may be applied to any or all phases of the development
cycle.

,p:., AUIOMATIC TEST TOOLS This category includes all computer programs that]
automatically devise and/or execute tests on other computer programs by
analysis of the path logic and variable domains of the software being tested

and construction of test data sets which will exercise all logical paths
under all or extreme input conditions.

'22

i* '. .

:<-';-E - 22

F..

I NS T R UC TION S S SHE ET 5

Column entries on Sheet 5 are the same general error categories used on Sheets
3 and 4 and their definitions are defined below.

Row entries on Sheet 5 are "error DETECTION mechanisms" which are effective in -"

detecting or recognizing errors.

You are asked to evaluate the effectiveness of each mechanism by indicating
what percentage of each error type can be detected (and corrected) by the use

.° of that mechanism. Ignore the possibility that the mechanism itself may
introduce errors.

COLUMN DEFINITIONS - SHEET 5

LOGICAL ERRORS - This category includes all instances where a particular
function is missing, incorrect or inadequate due to inadequate requirements

* definition, design errors or omissions or implementation errors.

INTERFACE ERRORS - This category includes all instances where a required
function is not implemented properly due to improper communication between
system components. All possible interfaces are included in the grouping:

- Software/Software: Includes errors which occur between software components
of the system such as when one program unit fails to call, calls in the
wrong sequence, or otherwise improperly calls another program unit. Also
included are all errors resulting from the improper sharing or passing of
data and/or control variables between program units.

- Software/Hiardware: Includes all errors which result in loss of data or
untimely exchange of data between system hardware and embedded software.
Included are situations where buffers become saturated or computation
cycles exceed their timing allocations. Also included are errors caused
by improper data exchange between system hardware and embedded software. K

- Sof tware/hman: SEE INPUT/OUTPUT ERRORS

INPUT/OUTPUT ERRORS - This category includes all instances where a required
function is not properly accomplished due to the manner in which input or
output is implemented. For purposes of this survey, include in this cate-
gory all software/human interfaces. For example, on input the software may
either accept improper commands or reject proper ones. On output, the soft-
ware may generate erroneous or ambiquous messages to the operator. Since
the survey is oriented toward mission critical, embedded software, I/O be-
tween the hardware and other software components is considered in the
"Interface Error" category.

E - 23

F *" *~44 •.. ..-. *

COMPUTATIONAL ERRORS - These are calculation errors. Included are: errors of
omission such as uninitialized variables; mathematical errors such as incor.-
rect expressions, conversion and truncation errors; and programming errors
such as improper use of indices, variables and overlays. DO NOT INCLUDE
SYNTAX ERRORS that would be eliminated prior to operation.

E 24

j.'

%.

.D
-

- 2 4

- .*-." -st:
I "

..

V
". -

,',

RO0W D EF I NI TION S S SHE ET 5

FREQUENT/INFREQUENT -- These are relative terms that may be interpreted by the
.4. reader. In general, however, it is preferred that "frequent" be used to
. describe activities that occur on a regular, scheduled basis (e.g., weekly).

"Infrequent" carries the connotation that the activity is less rigidly
planned and accomplished (e.g., whenever a problem is suspected).

WALKTHROUGH - A review process in which an analyst, designer or programmer
leads one or more peers through a segment of the software product which he
or she has developed.

PROGRESS REVIEW - For purposes of this survey, a progress review is a peri-
odic report given to an individual's supervisor to provide an assessment of
the state of completion of a software product. This is in contrast to a
walkthrough which is conducted among peers and is primarily technical in
nature.

QUALITY AUDIT - For purposes of this survey, a quality audit is an announced
* or unannounced inspection of a software product or process. For example, an

audit may consist of an inspection of a portion of a programmer's code to
verify compliance with programming standards.

PQT and FQT - See Below

SOF7%IWRE PROBLEM REPORT - A report of a program deficiency identified during
software qualification, test, system integration and test, or system oper-
ation, which appears to be software related. .

SPECIFICATION CHANGE NOTICE - A formal notification of a change in the
specification. __

ENGINEERING CHANGE NOTICE - A document used to process changes to baseline
documents and which includes both notice of an engineering change to a
configuration item and the supporting documentation by which the change is ,
described.

SOF7%ARE REQUIREMENTS REVIEW (SRR) - A review to achieve formal agreement
between the customer and the developer that the software requirements
specifications are complete and accurate.

PRELIMINARY DESIGN REVIEW (PDR) - A formal technical review of the basic
design approach. It is held after the completion of preliminary design
efforts but prior to the start of detailed design. See also SYSTEM
DESIGN REVIEW and CRITICAL DESIGN REVIEW.

CRITICAL DESIGN REVIEW (CDR) - A formal technical design review conducted
to ensure that the detailed design correctly and completely satisfies the
requirements. It is conducted after completion of the detailed design but ""'"
prior to coding. It establishes the design baseline.

E - 25

:Zd. 4<4 N .

TEST READINESS REVIEW (TRR) -- A review conducted prior to each test to ensure

adequacy of the documentation and to establish a configuration baseline.

FUNCTIONAL CONFIGURATION AUDIT (FCA) -- Audit to verify that the actual per-
formance of the configuration items complies with the B-5 development
specifications.

PHYSICAL CONFIGURATION AUDIT (PCA) -- A formal examination of the as-built
version of a configuration item against its technical documentation to
ensure the adequacy, completeness, and accuracy of the technical design
documentation.

UNIT LEVEL TESTING - Testing to verify program unit logic, computational
adequacy, data handling capability, interfaces and design extremes, and to
execute and verify every branch.

PRELIMINARY QUALIFICATION TESTING (PQT) - An incremental testing process
which provides visibility and control of the computer program development
during the time period between the Critical Design Review (CDR) and Formal
Qualification Testing (FQT); conducted for those functions critical to the
CPCI.

*i FORMAL QUALIFICATION TESTING (FQT) - Testing conducted prior to Functional
Configuration Audit to demonstrate CPCI compliance with all applicable
software specifications.

S4-.

SOFTWARE INTEGRATION TESTING - Tests of the overall computer program used to
verify proper module interfaces with respect to sequencing, timing, and data
compatibility.

SYSTEM INTEGRATION TESTING - The process of testing an integrated hardware
and software system to verify that the system meets its specified require-
ments.

OPERATIONAL FIELD TESTING - Tests performed by operational personnel in the
operational environment. These can be the same tests performed earlier
during FQT.

E - 26

.4

k-:- -.- *-- ... 4*..... .*..- ". , ,.*..- - . ..- ... -.- ,

." °. . .- . . o - -. ,• -. . . -- °
'%, " % " , ' . %, *. 4 . q .' ", ". " - . '. " ° -% . - . .- "- . .. " . " . " " - - " -. v' - .., . ' - " %'

APPENDIX F

FULL SCALE SURVEY RESULTS

F-1t

%* .

!,A.

Three hundred and fifty surveys were distributed and ninety were returned.
Table F-I shows a profile of the qualifications of the people who responded to
the survey. The occupations identified, the education level, and the years
experience show that we were quite successful in tapping genuine expert opin-
ions. The results presented herein represent the statistical properties of
the entire sample. Several test cases were conducted to see if there was a
noticeable difference in the responses of particular groups of individuals
(e.g., government versus industry), but none was apparent.

Table F-2 shows the results of sheet I of the survey where participants were
asked to rank the importance of various factors and categories. No single cat-
egory was universally recognized as the most (or least) important. The re-
sults, however, are indicative of the wide spectrum of software applications
and the subsequent divergence of concerns among developers. That is, the
primary concerns of software developers and users are directly related to the
type of software with which they are associated. It also indicates that a
reliability prediction methodology must either be "customized" for each appli-
cation or must include provisions for all possible influences. .

Table F-3 presents the statistical results of the survey. Specifically, the
following statistics are shown:

o AVERAGE - This is the numerical average of all the responses received.
It was computed individually for each row-column entry by summing the
non-blank entries and dividing by the number of non-blank entries.

o BOUNDS - These define the 90% confidence interval based on the computer
standard deviation of the mean response.

o STANDARD DEVIATION - This is the standard deviation of the mean, based
on the computed sample standard deviation and the sample size of each
individual row-column entry.

o NUMBER OF RESPONSES - This is the number of non-blank responses to
each individual entry.

.4A,

F-2

.. 4 .. ., *..- .. -. -. -

.°°.

TABLE F-I. PROFILE OF PARTICIPANTS

NUMBER OF
TYPE OF WORK PARTICIPANTS PERCENTAGE

University 4 4.5
Martin Marietta 15 17.0
Other Contractor 53 60.2
Government 16 18.2

NUMBER OF YEARS
EXPERIENCE

-. Unknown 4 4.5
1 - 5 10 11.4
6 -. 610 11 12.54--

-. 11 - 15 25 28.4
16 - 20 18 20.5
21 - 25 11 12.5

26 - 30 8 9.1
31 - 35 1 1.1
36 - 40 0 0.0 C:

41 - 45 0 0.0

AREA OF INVOLVEM NT

Systems User 1 1.1

Systems Procurement 1 1.1

Systems Validation 18 20.5
Systems Operations 1 1.1

Systems/SW Research 9 10.2
Systems Definition 0 0.0
Systems/SW Des/Dev 36 40.9

Systems Management 8 9.1
Training/Education 2 2.3

Other 12 13.6

LEVEL OF EDUCATION

Unknown 3 3.4
High School 2 2..

Associate's Deg-ee 2 2. 1
Bachelor's Degree 34 fi.
Master's Degree 34 10..
Doctoral Degree 13 14.11

r 3

~~~~~~~~~~~~~~~~~~~~~~~. ............... .................. ..-... ............... ...... ..... . .....-... ,-... .. ,-, , ... ,, . - -,-,. .- -. ,-.. .



TABLE F-2 RANKING OF INHERENT CHARACTERISTICS

OPERATIONAL APPLICATION TYPE 3.5

Predominantly Control 2.7
Predominantly Real Time 1.7
Predominantly Input/Output 3.3
Predominantly Interactive 2.8
Predominantly Computational 4.5

MISSION VARIABILITY 3.1

Many Distinct Operational Missions 1.4
Several Variations of Operational Missions 1.6
Single Operational Mission 2.9

FUNCTIONAL COMPLEXITY 2.3

Many Operations Required - Highly Complex 1.0
Many Operations Required - Relatively Simple 2.8
Few Operations Required - Highly Complex 2.2
Few Operations Required - Relatively Simple 4.0

SYSTEM INTERACTION 2.3

Extensive Hardware Interface Requirements 1.9
Minimal Hardware Interface Requirements 4.6
Extensive Software Interface Requirements 2.0
Minimal Software Interface Requirements 4.8
Extensive Human Interface Requirements 2.4
Minimal Human Interface Requirements 5.1

INPUT DOMAIN VARIABILITY 3.8

Wide Range of Error-Prone Inputs 1.1
Wide Range of Error-Free Inputs 2.8
Narrow Range of Error-Prone Inputs 2.3

" Narrow Range of Error-Free Inputs 3.8

F- 4

" " % " % ' " "4' % ,. , " '',' ', ". ' L 
° ' ' ' ' ' ' ' ' ' ' ' - ° - . ' . ' ' . ' ' , '

" -" ,' "-. " . . . " "- " "- "- " ". ",



TABLE F-3. STATISTICAL RESULTS OF SURVEY

REQ PRELIM DETAIL

INHERENT FACTORS DEF DES IGN4 DESIGN CODE

PREDOMINANTLY CONTROL

Average 5.9 4.7 4.7 3.1
Upper Bound 6.5 5.2 5.2 3.6
Lower Bound 5.3 4.2 4.3 2.6

Standard Deviation 0.4 0.3 0.3 0.3
Number of Responses 79 80 79 78

PREDOMINANTLY REAL TIME

Average 6.1 5.8 6.3 4.4
Upper Bound 6.7 6.4 6.7 5.0
Lower Bound 5.5 5.3 5.8 3.9

Standard Deviation 0.3 0.3 0.3 0.4
Number of Responses 82 82 80 79 *-

PREDOMINANTLY INPUT/OUTPUT

Average 5.3 4.4 4.3 3.0
Upper Bound 5.9 4.9 4.7 3.5
Lower Bound 4.7 3.9 3.9 2.5

Standard Deviation 0.4 0.3 0.3 0.3
Number of Responses 80 80 80 76

PREDOMINANTLY INTERACTIVE

Average 6.2 5.1 4.8 3.6
Upper Bound 6.8 5.6 5.3 4.1
Lower Bound 5.6 4.5 4.3 3.0

Standard Deviation 0.4 0.3 0.3 0.3
Number of Responses 78 78 78 78

PREDOMINANTLY COMPUTATIONAL "I

Average 3.7 3.3 3.5 3.0
Upper Bound 4.2 3.8 3.9 3.6
Lower Bound 3.1 2.8 3.0 2.5

Standard Deviation 0.3 0.3 0.3 0.3
Number of Responses 79 78 80 80

.. 5..'

. . . . . . . . .. . . . . . . .



REQ PRELIM DETAIL
INHERENT FACTORS DEF DESIGN DESIGN CODE

MANY DISTINCT OPERATIONAL MISSIONS

Average 7.4 6.4 5.6 3.5
Upper Bound 7.9 6.9 6.1 4.1
Lower Bound 7.0 5.9 5.1 3.0

Standard Deviation 0.3 0.3 0.3 0.3

Number of Responses 82 79 78 77

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS

Average 6.2 5.4 4.5 2.9
Upper Bound 6.7 5.8 5.0 3.4
Lower Bound 5.6 4.9 4.1 2.4

Standard Deviation 0.3 0.3 0.3 0.3
Number of Responses 82 79 77 77

SINGLE OPERATIONAL MISSION

Average 3.3 2.8 2.5 1.7
Upper Bound 3.9 3.2 2.9 2.0
Lower Bound 2.8 2.4 2.1 1.3

Standard Deviation 0.3 0.3 0.3 0.2
Number of Responses 82 78 78 77

MANY OPERATIONS REQUIRED - HIGHLY COMPLEX

, Average 7.7 7.1 6.5 4.4
Upper Bound 8.2 7.5 6.9 5.0
Lower Bound 7.2 6.7 6.0 3.8

Standard Deviation 0.3 0.2 0.3 0.3
Number of Responses 86 84 84 81

MANY OPERATIONS REQUIRED - RELATIVELY SIMPLE

Average 5.1 4.6 3.8 2.5
Upper Bound 5.6 5.0 4.2 2.9
Lower Bound 4.5 4.1 3.3 2.0

Standard Deviation 0.3 0.3 0.3 0.3
Number of Responses 80 81 80 80

FI 6

7'I



REQ PRELIM DETAIL
INHERENT FACTORS DEF DESIGN DESIGN CODE

FEW OPERATIONS REQUIRED - HIGHLY COMPLEX

Average 6.0 5.6 5.2 3.2
Upper Bound 6.6 6.1 5.7 3.7
Lower Bound 5.5 5.1 4.8 2.7

Standard Deviation 0.3 0.3 0.3 0.3
Number of Responses 83 81 81 79

FEW OPERATIONS REQUIRED - RELATIVELY SIMPLE

Average 2.9 2.5 2.2 1.8
Upper Bound 3.3 2.9 2.6 2.1
Lower Bound 2.4 2.1 1.8 1.4 /- '

Standard Deviation 0.3 0.2 0.2 0.2
Number of Responses 79 81 82 80 -

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS

Average 6.9 6.3 5.9 4.2
Upper Bound 7.5 6.8 6.3 4.8
Lower Bound 6.3 5.9 5.5 3.6

Standard Deviation 0.3 0.3 0.3 0.4
Number of Responses 80 80 79 74

MINIMAL HARDWARE INTERFACE REQUIREMENTS

Average 3.6 3.0 2.5 1.9
Upper Bound 4.1 3.5 2.9 2.3
Lower Bound 3.1 2.6 2.0 1.5

Standard Deviation 0.3 0.3 0.3 0.2
Number of Responses 74 75 76 73

EXTENSIVE SOFTIWARE INTERFACE REQUIREMENTS

Average 7.0 7.0 6.5 4.5
Upper Bound 7.5 7.4 6.9 5.1
Lower Bound 6.5 6.5 6.1 3.9

Standard Deviation 0.3 0.3 0.2 0.4
Number of Responses 82 81 81 77

.- 7.,

F - 7 "-'

'd , , " '.'., .,.
- '

, , ',e'. w .- ,-," e " ' • -, '". . '.., .... .,.... ,, .. . ,,.J. ,' , ". , ., ,..,",



b'"REQ PRELIM DETAIL ,'INHERENT FACTORS DEF DESIGN DESIGN CODE

MINIMAL SOFIWARE INTERFACE REQUIREMENTS

Average 3.3 2.9 2.4 1.8 2
Upper Bound 3.8 3.3 2.8 2.2
Lower Bound 2.8 2.5 2.0 1.5

Standard Deviation 0.3 0.3 0.3 0.2, Number of Responses 75 77 77 74

EXTENSIVE HUMAN INTERFACE REQUIREMENTS

Average 7.1 6.7 6.0 4.1
Upper Bound 7.7 7.2 6.4 4.6

-" Lower Bound 6.6 6.2 5.6 3.5
Standard Deviation 0.3 0.3 0.3 0.3

Number of Responses 82 79 80 76

MINIMAL HUMAN INTERFACE REQUIREMENTS

Average 3.4 2.9 2.6 1.8
Upper Bound 3.9 3.4 3.1 2.1
Lower Bound 2.9 2.4 2.2 1.4

Standard Deviation 0.3 0.3 0.3 0.2
Number of Responses 75 76 77 74

WIDE RANGE OF ERROR-PRONE INPUTS

Average 6.5 6.4 6.1 4.7
* - Upper Bound 7.1 6.9 6.6 5.4

Lower Bound 5.9 5.9 5.6 4.1
Standard Deviation 0.3 0.3 0.3 0.4

Number of Responses 79 79 80 77

WIDE RANGE OF ERROR-FREE INPUTS

Average 4.2 4.1 3.4 2.0
Upper Bound 4.7 4.6 3.9 2.4
Lower Bound 3.7 3.6 2.9 1.6

Standard Deviation 0.3 0.3 0.3 0.2
Number of Responses 78 77 75 74

F- 8

<--'-" :, "--..............................................-.-.-" .- • .- -.- , -,.'-..-.-, ---,.- - "'>,. .... >. 1...-.......

' . . . . . . .C-1. i. ~ < >7. . . . . . . . . . . . . . . . . . . . . . .



REQ PRELIM DETAIL
INHERENT FACTORS DEF DESIGN4 DESIGN CODE

NARRCM RANGE OF ERROR-PRONE INPUTS

Average 4.8 4.6 3.9 3.0
upper Bound 5.4 5.1 4.5 3.6
Lower Bound 4.3 4.2 3.4 2.5

Standard Deviation 0.3 0.3 0.3 0.3
Number of Responses 76 76 75 73

NARROWJ RANGE OF ERROR-FREE INPUTS

Average 2.7 2.4 2.1 1.6
upper Bound 3.2 2.9 2.5 1.9
Lower Bound 2.2 2.0 1.7 1.2

Standard Deviation 0.3 0.3 0.2 0.2
Number of Responses 76 75 76 72

F-9

'T, I



INHERENT FACTORS LOGIC INT I/O COMP

PREDOMINANTLY CONTROL

, Average 37.2 29.9 19.2 13.8
Upper Bound 40.9 32.8 21.4 15.8
Lower Bound 33.5 27.0 16.9 11.8

Standard Deviation 2.3 1.8 1.4 1.2
- Number of Responses 75 75 75 75

PREDOMINANTLY REAL TIME

Average 30.8 30.8 20.3 16.6
Upper Bound 34.1 33.6 22.9 19.4
Lower Bound 27.6 28.0 17.8 13.9

Standard Deviation 2.0 1.7 1.5 1.7

Number of Responses 76 76 76 76

PREDOMINANTLY INPUT/OUTPUT

Average 20.5 25.6 42.3 10.5
Upper Bound 22.9 28.1 45.6 12.2
Lower Bound 18.0 23.2 39.0 8.7

Standard Deviation 1.5 1.5 2.0 1.1
Number of Responses 75 75 75 75

PREDOMINANTLY INTERACTIVE

Average 27.0 34.2 26.4 12.1
Upper Bound 30.1 37.1 29.5 14.1
Lower Bound 24.0 31.3 23.3 10.2

Standard Deviation 1.8 1.8 1.9 1.2
Number of Responses 75 75 75 75

PREDOMINANTLY COMPUTATIONAL

Average 27.7 16.9 13.3 41.1
Upper Bound 30.8 19.2 15.0 44.9
Lower Bound 24.6 14.7 11.7 37.2

Standard Deviation 1.9 1.4 1.0 2.3
Number of Responses 75 75 75 75

F-10

Z .



INHERENT FACTORS LOGIC INT I/O COMP

MANY DISTINCT OPERATIONAL MISSIONS

Average 38.5 29.9 17.5 14.1
Upper Bound 41.7 32.2 19.1 16.2
Lower Bound 35.3 27.6 15.8 12.0

Standard Deviation 1.9 1.4 1.0 1.3
Number of Responses 74 74 74 74

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS

Average 36.2 29.8 17.8 16.2
Upper Bound 39.3 32.3 19.5 18.7
Lower Bound 33.0 27.3 16.2 13.8

Standard Deviation 1.9 1.5 1.0 1.5
Number of Responses 74 74 74 74

SINGLE OPERATIONAL MISSION

Average 32.3 25.1 19.4 21.2
Upper Bound 35.5 27.4 21.3 24.3
Lower Bound 29.0 22.7 17.4 18.1

Standard Deviation 2.0 1.4 1.2 1.9
Number of Responses 74 74 74 74

- MANY OPERATIONS REQUIRED - HIGHLY INTERRELATED

Average 38.5 31.6 15.1 14.9
Upper Bound 41.7 34.3 16.7 17.1
Lower Bound 35.3 28.8 13.4 12.7

Standard Deviation 2.0 1.7 1.0 1.3
Number of Responses 78 78 78 78

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT

Average 37.2 23.6 18.7 19.1
Upper Bound 40.6 25.9 20.8 21.6
Lower Bound 33.9 21.2 16.7 16.7

Standard Deviation 2.0 1.5 1.3 1.5
Number of Responses 75 75 75 75

F-li

4e,-,

• ,-.- : ,. . t."."....."..-.-".....,,........,.,...................',,........."...-.....',...- 4 ' -"--" , & ' "" -""-,'""".



INHERENT FACTORS LOGIC INT I/O COMP

FEW OPERATIONS REQUIRED - HIGHLY INTERRELATED

Average 34.6 31.6 16.8 17.2
Upper Bound 37.5 34.4 18.4 19.5
Lower Bound 31.7 28.7 15.1 14.8

Standard Deviation 1.8 1.7 1.0 1.4
Number of Responses 76 76 76 75

FEW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT

Average 34.3 24.0 18.2 21.8
Upper Bound 37.4 26.1 19.8 24.5
Lower Bound 31.2 21.9 16.7 19.1

Standard Deviation 1.9 1.3 1.0 1.6
Number of Responses 76 76 76 76

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS

Average 26.2 42.5 20.9 10.4
Upper Bound 29.2 45.6 23.3 11.8
Lower Bound 23.2 39.4 18.5 8.9

Standard Deviation 1.8 1.9 1.5 0.9
Number of Responses 76 76 76 76

MINIMAL HARDWARE INTERFACE REQUIREMENTS

Average 31.1 28.4 21.4 17.5
Upper Bound 34.0 31.5 23.2 19.6
Lower Bound 28.3 25.4 19.6 15.3

Standard Deviation 1.7 1.9 1.1 1.3
Number of Responses 72 72 72 72

EXTENSIVE SOFTWARE INTERFACE REQUIREMENTS

Average 28.4 41.7 17.5 11.3
Upper Bound 31.4 45.0 19.9 13.0
Lower Bound 25.4 38.3 15.1 9.6

Standard Deviation 1.8 2.0 1.5 1.0

Number of Responses 78 78 78 78

F- 12

-:..,



INHERENT FACTORS LOGIC INT I/O COMP

MINIMAL SOFIWARE INTERFACE REQUIREMENTS

4, Average 30.7 27.5 21.5 18.9
Upper Bound 33.3 30.9 23.3 21.4
Lower Bound 28.2 24.2 19.7 16.3

Standard Deviation 1.6 2.0 1.1 1.5
Number of Responses 72 72 72 72

EXTENSIVE HUMAN INTERFACE REQUIREMENTS

Average 27.0 34.1 26.7 11.2
Upper Bound 30.0 37.6 30.0 12.9
Lower Bound 24.0 30.5 23.4 9.4

Standard Deviation 1.8 2.2 2.0 1.1
Number of Responses 75 75 75 75

MINIMAL HUMAN INTERFACE REQUIREMENTS

Average 32.2 26.9 21.3 17.8
Upper Bound 34.9 29.5 23.3 20.1
Lower Bound 29.4 24.4 19.2 15.6

Standard Deviation 1.7 1.6 1.2 1.4
Number of Responses 72 72 72 72

WIDE RANGE OF ERROR-PRONE INPUTS

Average 30.3 23.6 28.3 17.8
Upper Bound 34.4 26.8 32.2 21.0
Lower Bound 26.3 20.3 24.4 14.6

Standard Deviation 2.5 2.0 2.4 2.0
Number of Responses 73 73 73 73

SYS42: :OPAO:,OPERATOR 15:07:36.73"
SYSTEM COMING DOWN AT 6:00PM FOR BACKUPS
WIDE RANGE OF ERROR-FREE INPUTS

Average 30.4 25.3 24.7 19.2
Upper Bound 33.4 28.0 27.2 21.8

Lower Bound 27.4 22.5 22.3 16.5

Standard Deviation 1.8 1.7 1.5 1.6

Number of Responses 70 70 70 70

F- 1371

*%

-.-:. . . . . . . .-: ;i:!



INHERN FACTORS LOGIC INT I/O COMP

NARROW RANGE OF ERROR-PRONE INPUTS

. Average 31.3 23.6 25.9 18.0
Upper Bound 34.8 26.6 28.9 20.4

"-.'- Lower Bound 27.9 20.6 23.0 15.6
Standard Deviation 2.1 1.8 1.8 1.5

Number of Responses 72 72 72 72

NARROW RANGE OF ERROR-FREE INPUTS

Average 31.1 23.7 24.8 20.0
Upper Bound 34.2 26.0 27.5 22.1
Lower Bound 28.1 21.5 22.1 17.9

Standard Deviation 1.9 1.4 1.6 1.3
Number of Responses 70 70 70 70

"1

4:,

V .

! _ F - 14

" . '- .'''-" ' s v ' - -,'''. -iS' ."..' " ," .". ." .' "." " . ". '. . ".' '' '. -" "''" -S'''[ .". . . ...'" 7''.: %'''



AVOIDANCE MECHANISMS LOGIC INT I/0 COMP,

INDEPENDENT QUALITY ASSURANCE ORGANIZATION

Average 35.4 34.7 30.8 30.3
Upper Bound 41.2 40.0 36.3 36.1
Lower Bound 29.6 29.4 25.3 24.5

Standard Deviation 3.5 3.2 3.3 3.6
Number of Responses 70 69 66 67

INDEPENDENT TEST ORGANIZATION

Average 30.4 33.8 34.9 35.4
Upper Bound 35.6 39.1 40.4 40.6
Lower Bound 25.1 28.5 29.5 30.1

Standard Deviation 3.2 3.2 3.3 3.2
Number of Responses 69 68 68 70

INDEPENDENT VERIFICATION AND VALIDATION (IV&V)

Average 36.9 33.9 35.2 37.8

Upper Bound 42.2 39.0 40.7 43.4
Lower Bound 31.5 28.8 29.6 32.2

Standard Deviation 3.2 3.31 3.3 3.4
Number of Responses 69 68 66 67

USE OF A SOFTWARE SUPPORT LIBRARY

Average 22.31 24.3 22.8 24.3
Upper Bound 26.3 28.7 27.0 28.8
Lower Bound 17.9 20.0 18.6 19.7

Standard Deviation 2.5 2.6 2.6 2.8
Number of Responses 67 68 66 69

USE OF A SOFTWARE CONFIGURATION CONTROL BOARD

Average 22.5 32.1 22.3 16.9
Upper Bound 27.0 37.1 26.6 20.8
Lower Bound 18.1 27.1 18.0 13.0

Standard Deviation 2.7 3.1 2.6 2.4
Number of Responses 67 71 67 667 .

F 15.



I . ' l..-."I

• AVOIDANCE MECHANISMS LOGIC INT I/O COMP

THOROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN

Average 32.8 34.8 33.2 32.2 p -

Upper Bound 38.0 39.8 38.3 37.5
Lower Bound 27.7 29.8 28.2 26.9

Standard Deviation 3.1 3.0 3.1 3.2
, Number of Responses 72 72 71 71

RIGIDLY CONTROLLED SYSTEM REQUIREMENTS SPEC

Average 35.4 38.3 32.3 30.2
Upper Bound 40.3 43.1 36.9 35.2
Lower Bound 30.5 33.4 27.6 25.3

Standard Deviation 3.0 3.0 2.8 3.0

Number of Responses 75 73 72 69

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC

Average 30.2 53.4 37.0 23.1
Upper Bound 35.1 58.3 42.1 27.8
Lower Bound 25.3 48.6 32.0 18.3

Standard Deviation 3.0 2.9 3.1 2.9
Number of Responses 70 77 72 68

RIGIDLY CONTROLLED SOFTWARE REQUIREMENTS SPEC

Average 40.2 39.5 36.6 34.0
Upper Bound 45.1 44.3 41.4 38.6
Lower Bound 35.3 34.7 31.8 29.5

Standard Deviation 3.0 2.9 2.9 2.8
Number of Responses 75 75 71 72 -

RIGIDLY CONTROLLED SOFIWARE FUNCTIONAL DESIGN SPEC

Average 36.3 38.8 34.5 34.4
Upper Bound 40.9 43.6 39.3 39.2
Lower Bound 31.7 34.0 29.7 29.7

Standard Deviation 2.8 2.9 2.9 2.9
Number of Responses 74 74 72 71

F 1

: F - 16

-------------------------- 1-
, '- ', ,, "- "- "- '," - .' " " .' " " "- -'. -" "'. -L ' ': '. " * , -" "." " ' " " "' , "- ",- ' ' . ' " " ' " - . - "" . . ' "< ' . - " . - . - . ' : . - " .- . - ' '

." ' 4 _ - . . ** " . " . " ,• • . " ., . . . " . - .- , - . " - . , . -.'... .-.-p . .- .- . • _-



AVOIDANCE MECHANISMS LOGIC INT I/0 COMP

RIGIDLY CONTROLLED SOFNARE DETAILED DESIGN SPEC

Average 38.3 39.2 39.0 40.3
Upper Bound 43.2 44.4 44.1 45.4
L Lower Bound 33.5 34.1 33.9 35.3

Standard Deviation 2.9 3.1 3.1 3.1
Number of Responses 75 73 70 73

REQUIREMENTS TRACEABILITY MATRIX

Average 35.5 31.9 26.2 22.9 '
Upper Bound 41.1 36.6 31.1 27.6
Lower Bound 29.8 27.2 21.4 18.1

Standard Deviation 3.4 2.8 3.0 2.9
Number of Responses 64 68 65 63

STRUCTURED ANALYSIS TOOLS

SYS42::OPAO:,OPERATOR 15:08:16.11
PLEASE DONOT SUBMIT ANY VERY LONG JOBS

Average 33.7 30.6 28.3 25.8
Upper Bound 38.8 35.2 33.1 30.5
Lower Bound 28.6 26.0 23.4 21.2

Standard Deviation 3.1 2.8 2.9 2.8
Number of Responses 65 66 64 65

PROGRAM SPECIFICATION LANGUAGE (PSL)

Average 31.8 29.0 25.2 24.8
Upper Bound 36.8 33.9 29.7 29.8
Lower Bound 26.9 24.2 20.8 19.9

Standard Deviation 3.0 2.9 2.7 3.0
Number of Responses 65 63 63 62

PROGRAM DESIGN LANGUAGE (PDL)

Average 35.7 31.3 27.9 28.6
Upper Bound 40.3 35.8 32.5 33.4
Lower Bound 31.0 26.7 23.3 23.9

Standard Deviation 2.8 2.8 2.8 2.9
Number of Responses 72 68 66 66

F 17

..-...-..............-................ .. . . .. . . . ..-... ..... .... ... .: :.." ,:. -.-



* AVOIDANCE MECHANISMS LOGIC INT I/O COMP

HIGH ORDER LANGUAGE (HOL)

Average 32.6 29.4 30.2 34.9
Upper Bound 37.4 34.1 35.1 39.7
Lower Bound 27.9 24.8 25.3 30.2

Standard Deviation 2.9 2.8 3.0 2.9
Number of Responses 70 63 64 72

HIERARCHICAL, TOP-DOWN DESIGN4

Average 38.3 36.7 31.5 26.5 ,
Upper Bound 43.0 41.3 36.3 31.2
Lower Bound 33.6 32.2 26.8 21.9

Standard Deviation 2.9 2.7 2.9 2.8
Number of Responses 67 72 66 66

STRUCTURED DESIGN"4

Average 38.1 36.0 32.3 28.5
Upper Bound 42.7 40.8 37.2 33.1
Lower Bound 33.5 31.2 27.4 23.8

Standard Deviation 2.8 2.9 3.0 2.9
Number of Responses 71 70 65 68

SINGLE FUNCTION MODULARIZATION

Average 37.5 32.6 30.2 30.8
Upper Bound 42.5 37.7 35.5 35.8
Lower Bound 32.5 27.4 25.0 25.8

Standard Deviation 3.1 3.1 3.2 3.0
Number of Responses 68 70 65 67

STRUCTURED CODE

Average 37.1 30.5 28.0 33.7
Upper Bound 41.9 35.1 33.0 38.7
Lower Bound 32.3 26.0 23.1 28.6

Standard Deviation 2.9 2.7 3.0 3.1
Number of Responses 70 65 64 68

F 18

* '. . *,*-w *** " ,, - - - -o,., -. -.-.-. p,..-. - .- . -. V._ - -- -. - . o . , - •"- .". - "- -" ". ' "



AVOIDANCE MECHANISMS LOGIC INT 1/0 COMP

USE OF AUTOMATIC MEASUREMENT TOOLS

Average 23.9 22.0 22.8 24.5
Upper Bound 28.3 26.4 27.2 29.4
Lower Bound 19.4 17.6 18.4 19.5

standard Deviation 2.7 2.7 2.7 3.0
Number of Responses 57 56 56 56

* USE OF AUTOMATIC TEST TOOLS

Average 30.1 28.2 28.8 30.8
Upper Bound 35.0 32.9 33.5 35.8
Lower Bound 25.1 23.4 24.0 25.7

Standard Deviation 3.0 2.9 2.9 3.1
Number of Responses 64 63 64 64

F -19 7
. . .. '. . . . . .



4-4b

- -- - r - - -- - - -- - - - -- - - -

FREQUENT PEER WALKTHROUGHS

Average 45.2 40.5 37.9 39.3
Upper Bound 49.9 45.4 42.9 44.3

Lower Bound 40.5 35.5 32.8 34.3
Standard Deviation 2.9 3.0 3.1 3.0

Number of Responses 80 75 75 77

INFREQUENT PEER WALKTHROUGHS

Average 25.1 22.5 19.5 20.3
Upper Bound 28.7 26.4 23.0 23.7
Lower Bound 21.5 18.7 16.0 16.8

Standard Deviation 2.2 2.3 2.1 2.1
Number of Responses 72 70 69 70

FREQUENT PROGRESS REVIEWS

Average 24.5 22.0 21.5 19.8
Upper Bound 29.1 26.4 25.9 23.9
Lower Bound 19.8 17.7 17.0 15.6

Standard Deviation 2.8 2.6 2.7 2.5
Number of Responses 68 68 67 68

INFREQUENT PROGRESS REVIEWS

Average 11.0 11.0 10.2 8.8
Upper Bound 13.3 13.5 12.5 10.8
Lower Bound 8.8 8.6 7.8 6.7

Standard Deviation 1.4 1.5 1.5 1.3
Number of Responses 62 63 63 61

FREQUENT QUALITY AUDITS

Average 28.8 26.9 26.7 24.5

Upper Bound 33.4 31.5 31.3 29.0
Lower Bound 24.3 22.2 22.1 20.1

Standard Deviation 2.8 2.8 2.8 2.7
Number of Responses 71 69 68 70

F -20



DETECTION MECHANISMS LOGIC INT I/ COMP

INFREQUENT QUALITY AUDITS

Average 13.8 13.2 12.0 11.8

Upper Bound 16.7 16.0 14.5 14.4
Lower Bound 10.9 10.4 9.5 9.3

Standard Deviation 1.8 1.7 1.5 1.5
Number of Responses 66 65 65 65

USE OF SOFTWARE PROBLEM REPORTS PRIOR PQT

Average 33.2 33.2 29.7 31.5
Upper Bound 38.4 38.3 34.8 37.0
Lower Bound 28.1 28.1 24.5 26.0

Standard Deviation 3.1 3.1 3.1 3.3
Number of Responses 66 66 65 65

2 USE OF SOWARE PROBLEM REPORTS SUBSEQUENT '0 POT

Average 26.5 27.8 25.2 25.8
Upper Bound 30.9 32.5 29.7 30.3
Lower Bound 22.1 23.2 20.8 21.2

Standard Deviation 2.7 2.8 2.7 2.8
Number of Responses 66 65 64 65

USE OF SOFTWkRE PROBLEM REPORTS SUBSEQUENT TO FQT

Average 24.5 28.4 23.7 24.6
Upper Bound 29.2 33.8 28.3 29.4
Lower Bound 19.9 23.0 19.0 19.8 ',

Standard Deviation 2.8 3.3 2.8 2.9
Number of Responses 62 62 60 61

,. USE OF SPECIFICATION CHANGE NOTICES (SCN's)

Average 19.3 22.1 18.9 17.1
Upper Bound 23.5 26.5 22.8 21.1
Lower Bound 15.1 17.8 15.0 13.1

Standard Deviation 2.5 2.6 2.4 2.4
Number of Responses 62 65 64 62

F - 21

:., ....... .. ., . .. .:.... -. . . . . - . - - - .- -. -. ..- -. . .- .. .,..:i



h D-fl165 231 IMPACT OF HAiRDWRRE/SDFTNARE FAULTS ON SYSTEM3/
RELIABILITY VOLUME i STUDY R . (U) MARTIN MARIETTA

I AEROSPACE ORLANDO FL E C SOISTMAN ET AL. DEC 85

I NLSSIFIED OR-i~i73 RADC-TR-85-228-VOLiFG92 LEu'.'.sn -i F6 /2N



111 1.0 : 2

I ___________1112.0

11 1.25 (111 1.411111 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

02 M'



DETECTION MECHANISMS LOGIC INT I/O COMP

USE OF ENGINEERING CHANGE NOTICES (ECN'S)

Average 20.1 23.1 19.8 18.2
Upper Bound 24.5 27.7 24.2 22.5
Lower Bound 15.7 18.4 15.4 13.9

Standard Deviation 2.7 2.8 2.7 2.6
Number of Responses 61 . 64 62 61

SOFTWARE REQUIREMENTS REVIEW (SRR)

Average 31.4 33.1 28.0 23.4
Upper Bound 36.3 37.6 32.7 27.9
Lower Bound 26.5 28.6 23.4 18.8

Standard Deviation 3.0 2.7 2.8 2.8
Number of Responses 73 72 69 67

PRELIMINARY DESIGN REVIEW (PDR)

Average 28.6 32.1 27.9 22.7
Upper Bound 32.8 36.1 32.0 26.8
Lower Bound 24.5 28.0 23.8 18.5

Standard Deviation 2.5 2.5 2.5 2.5
Number of Responses 73 73 70 67

CRITICAL DESIGN REVIEW (CDR)

Average 32.3 32.8 30.5 26.2
Upper Bound 36.6 36.8 34.8 30.4
Lower Bound 28.1 28.7 26.2 22.0 ,

Standard Deviation 2.6 2.5 2.6 2.6
Number of Responses 75 74 71 70

TEST READINESS REVIEW (TRR) ,3.2 .

Average 20.1 23.4 21.9 20.3

Upper Bound 24.0 27.5 25.9 24.4
: Lower Bound 16.3 19.3 17.9 16.2

Standard Deviation 2.4 2.5 2.4 2.5
Number of Responses 68 71 68 68

F -22

" -v.. - .% "-
;'l ,.' . ~ "' . '"., "P"- ."- ,".,"\,J. -' , "/ - "J- '',- ''-.-,-''' "," " .-* .-. % " . "" *



DETECTION MECHANISMS LOGIC INT I/O COMP,

FUNCTIONAL CONFIGJRATION AUDIT (FCA)

Average 18.2 21.8 20.8 18.3

Upper Bound 22.4 26.1 25.3 22.5
Lower Bound 14.0 17.5 16.4 14.1

Standard Deviation 2.6 2.6 2.7 2.6
Number of Responses 68 71 68 67

PHYSICAL CONFIGURATION AUDIT (PCA)

Average 14.9 17.4 17.7 14.5
Upper Bound 18.7 21.0 21.4 18.2
Lower Bound 11.2 13.8 14.1 10.9

Standard Deviation 2.3 2.2 2.2 2.2
Number of Responses 67 69 66 64

INFORMAL UNIT-LEVEL TESTING

Average 43.4 31.8 34.5 45.6
Upper Bound 48.1 37.1 39.7 50.5
Lower Bound 38.6 26.6 29.3 40.7

Standard Deviation 2.9 3.2 3.2 3.0
Number of Responses 77 73 74 76

PRELIMINARY QUALIFICATION TESTING (PQT)

Average 36.1 34.1 31.8 32.1
Upper Bound 40.7 38.5 36.4 36.9
Lower Bound 31.4 29.7 27.3 27.2

Standard Deviation 2.8 2.7 2.8 2.9
Number of Responses 70 74 73 70

FORMAL QUALIFICATION TESTING (FQT)

Average 31.4 30.0 28.9 30.2
Upper Bound 36.0 34.4 33.7 35.2
Lower Bound 26.7 25.6 24.2 25.1

Standard Deviation 2.8 2.7 2.9 3.1
Number of Responses 74 76 75 72

F- 23

--..

.~ -%



DETECTION MECHANISMS LOGIC INT I/O COMP

SOFTWARE INTEGRATION TESTING

Average 34.9 45.0 38.2 33.4 j
Upper Bound 39.5 49.5 42.8 38.3
Lower Bound 30.4 40.5 33.7 28.4

Standard Deviation 2.8 2.7 2.8 3.0
Number of Responses 75 77 77 73

SYSTEM INTEGRATION TESTING
Average 33.0 41.3 36.7 31.2

Upper Bound 37.7 45.9 41.5 36.4
Lower Bound 28.2 36.8 32.0 26.0

Standard Deviation 2.9 2.8 2.9 3.2
Number of Responses 77 79 79 74

OPERATIONAL FIELD TESTING

Average 32.7 35.2 36.3 31.2
Upper Bound 36.0 38.4 39.5 34.6
Lower Bound 29.4 32.0 33.1 27.8

Standard Deviation 3.3 3.2 3.2 3.4
Number of Responses 75 78 77 75

F 24

-1.W "4- PA,.



- - . - - . r v - - w - - - - U r - w - w --i- - . - -

MISSION 2
Of0

Rame Air Development Center
RAVC ptanA and executes 'Le-eatch, devetCopment, test2
and zetec-ted acquisition piAogk'am.6 ifl 4LppotLt o6

*Command, Cont't, Commu4ncations and Intettigence
(C31) actvities. Technicat and eng-Lnee'ting
sippott within aitea4 oSj competence -Ls piovided to
ESV Ptcogtam 06jces (PO-6) and o-theit ESV etements
-to pe't~otm e66ectLve acqusi&tion o6 C3 1 sys-tems.
The aiteaz~ oj techn.ZcaZ competence inctude

* - commnications, command and contitot, battte
management, in~oitmation p,%ocezziA.ng, s&tve-LZtance
-4enzot., ntetgence data cottection and handting,

* -6'Zid state sciences, etecttomagnetia, and
p'topagati-on, and etectionic, mainta-Lnabietqt,

- .. and com~patbitity.

or'



DT II


